Answer:
Average atomic mass of chlorine is 35.48 amu.
Explanation:
Given data:
Percent abundance of Cl-35 = 76%
Percent abundance of Cl-37 = 24%
Average atomic mass = ?
Solution:
Average atomic mass = (abundance of 1st isotope × its atomic mass) +(abundance of 2nd isotope × its atomic mass) / 100
Average atomic mass = (76×35)+(24×37) /100
Average atomic mass = 2660 + 888 / 100
Average atomic mass = 3548/ 100
Average atomic mass = 35.48 amu
Average atomic mass of chlorine is 35.48 amu.
Answer : The correct option is, (C) 1.1
Solution : Given,
Initial moles of
= 1.0 mole
Initial volume of solution = 1.0 L
First we have to calculate the concentration
.


The given equilibrium reaction is,

Initially c 0
At equilibrium

The expression of
will be,
![K_c=\frac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)

where,
= degree of dissociation = 40 % = 0.4
Now put all the given values in the above expression, we get:



Therefore, the value of equilibrium constant for this reaction is, 1.1
Complete question is;
A drop of water has a volume of approximately 7 × 10⁻² ml. How many water molecules does it contain? The density of water is 1.0 g/cm³.
This question will require us to first find the number of moles and then use avogadro's number to get the number of water molecules.
<em><u>Number of water molecules = 2.34 × 10²¹ molecules</u></em>
We are given;
Volume of water; V = 7 × 10⁻² ml
Density of water; ρ = 1 g/cm³ = 1 g/ml
Formula for mass is; m = ρV
m = 1 × 7 × 10⁻²
m = 7 × 10⁻² g
from online calculation, molar mass of water = 18.01 g/mol
Number of moles(n) = mass/molar mass
Thus;
n = (7 × 10⁻²)/18.01
n = 3.887 × 10⁻³ mol
from avogadro's number, we know that;
1 mol = 6.022 × 10²³ molecules
Thus,3.887 × 10⁻³ mol will give; 6.022 × 10²³ × 3.887 × 10⁻³ = 2.34 × 10²¹ molecules
Read more at; brainly.in/question/17990661
Answer:
compound
Explanation:
A molecule is the smallest particle in a chemical element or compound that has the chemical properties of that element or compound. Molecules are made up of atoms that are held together by chemical bonds. These bonds form as a result of the sharing or exchange of electrons among atoms.