Answer:x(t)= Acos(wt)
Explanation:
According to Newton's 2nd law,a particle of mass m acted on by a force is given by:Fs=-kx
Where x is displacement from equilibrium
K = spring constant
Therefore X(t) = Acos(2pit/T)
X(t)= Acos(wt)
I thinks its He uses proof to show the evidence is relevant. But im not totally positive on it hope this helps
Answer:
the reaction force in this situation would be B
Explanation:
The action is the wings pushing down whilst the reaction is the air pushing up which allow the bird to fly .
plz mark brainliest to help me lvl up :P
Correct question:
Consider the motion of a 4.00-kg particle that moves with potential energy given by

a) Suppose the particle is moving with a speed of 3.00 m/s when it is located at x = 1.00 m. What is the speed of the object when it is located at x = 5.00 m?
b) What is the magnitude of the force on the 4.00-kg particle when it is located at x = 5.00 m?
Answer:
a) 3.33 m/s
b) 0.016 N
Explanation:
a) given:
V = 3.00 m/s
x1 = 1.00 m
x = 5.00

At x = 1.00 m

= 4J
Kinetic energy = (1/2)mv²

= 18J
Total energy will be =
4J + 18J = 22J
At x = 5

= -0.24J
Kinetic energy =

= 2Vf²
Total energy =
2Vf² - 0.024
Using conservation of energy,
Initial total energy = final total energy
22 = 2Vf² - 0.24
Vf² = (22+0.24) / 2

= 3.33 m/s
b) magnitude of force when x = 5.0m



At x = 5.0 m


= 0.016N
According to newton's first law, massive objects have larger inertia than
small objects, which means it takes more force to move bigger things
than smaller
ones.