<h2>
Answer:</h2>
<em>Hello, </em>
<h3><u>QUESTION)</u></h3>
According to the second Newton's Law,
<em>✔ We have : F = m x a ⇔ m = F/a </em>
The mass of the object is therefore 200 kg.
Answer:
c. You would weigh less on planet A because the distance between
you and the planet's center of gravity would be smaller.
Explanation:
The statement that best describes your weight on each planet is that you would weigh less on planet A because the distance between you and the planet's center of gravity would be smaller.
- This is based on Newton's law of universal gravitation which states that "the force of gravity between two bodies is directly proportional to the product of their masses and inversely proportional to the square of the distances between them".
Since weight is dependent on the force of gravity and mass, the planet with more gravitational pull will have masses on them weighing more.
- Since the distance between the person and the center of the planet is smaller, therefore, the weight will be lesser.
The volume of the balloon will halve
Explanation:
Boyle's law states that for an ideal gas kept at constant temperature, the pressure of the gas is proportional to its volume. Mathematically,

where
p is the gas pressure
V is the volume
The equation can also be rewritten as

And if we apply it to the gas inside the balloon in this problem (assuming its temperature is constant), we have:
is the initial pressure at sea level (the atmospheric pressure)
is the initial volume
is the final pressure
is the final volume
Substituting into the equation, we find:

Which means that the volume of the balloon will halve.
Learn more about ideal gases:
brainly.com/question/9321544
brainly.com/question/7316997
brainly.com/question/3658563
#LearnwithBrainly
Fusion & Fission are both processes that involve D. Strong Nuclear Fundamental forces
"D". is the answer