For equal moles of gas, temperature can be calculated from ideal gas equation as follows:
P×V=n×R×T ...... (1)
Initial volume, temperature and pressure of gas is 3.25 L, 297.5 K and 2.4 atm respectively.
2.4 atm ×3.25 L=n×R×297.5 K
Rearranging,
n\times R=0.0262 atm L/K
Similarly at final pressure and volume from equation (1),
1.5 atm ×4.25 L=n×R×T
Putting the value of n×R in above equation,
1.5 atm ×4.25 L=0.0262 (atm L/K)×T
Thus, T=243.32 K
18. Reaction will occur.
19. Reaction Will occur.
20. Reaction will occur.
21. Reaction will occur.
22. Reaction won't occur.
23. Reaction will occur.
24. Reaction will occur.
25. Reaction won't occur.
<h3><u>Explanation</u>:</h3>
The reaction rate of the metals with water, steam, acid, or hydroxides or their inert behavior towards them are noted in the metal activity series.
It contains all the metals one after the other which and the upper metal can replace the lower metal from its salt.
Calcium can replace hydrogen from acid, so the reaction will occur in 18. The products formed are calcium phosphate and hydrogen gas.
Chlorine is more reactive than bromine. So it can replace bromine from its salt to from bromine gas and magnesium chloride.
Aluminium can replace iron from its salt. So it will form aluminium oxide and iron metal. This reaction is used to obtain iron from ores.
Zinc can replace hydrogen from acid. So the products will be zinc chloride and hydrogen gas.
Chromium cannot displace hydrogen form water. So the reaction won't occur.
Tin can replace hydrogen form acid. So the reaction will proceed.
Magnesium will replace platinum from its salt. So magnesium oxide and platinum will form.
Bismuth cannot replace hydrogen from acid. So the reaction won't proceed.
Answer:
Option B. 2096.1 K
Explanation:
Data obtained from the question include the following:
Enthalpy (H) = +1287 kJmol¯¹ = +1287000 Jmol¯¹
Entropy (S) = +614 JK¯¹mol¯¹
Temperature (T) =.?
Entropy is related to enthalphy and temperature by the following equation:
Change in entropy (ΔS) = change in enthalphy (ΔH) / Temperature (T)
ΔS = ΔH / T
With the above formula, we can obtain the temperature at which the reaction will be feasible as follow:
ΔS = ΔH / T
614 = 1287000/ T
Cross multiply
614 x T = 1287000
Divide both side by 614
T = 1287000/614
T = 2096.1 K
Therefore, the temperature at which the reaction will be feasible is 2096.1 K
Answer:
oceans,air,rocks,soil, also living things
Explanation:
Answer:Calorimetry
Explanation: In this case, an instrument called Calorimeter is used to measure the amount of heat being transferred