Answer:
The pH of 0.1 M BH⁺ClO₄⁻ solution is <u>5.44</u>
Explanation:
Given: The base dissociation constant:
= 1 × 10⁻⁴, Concentration of salt: BH⁺ClO₄⁻ = 0.1 M
Also, water dissociation constant:
= 1 × 10⁻¹⁴
<em><u>The acid dissociation constant </u></em>(
)<em><u> for the weak acid (BH⁺) can be calculated by the equation:</u></em>

<em><u>Now, the acid dissociation reaction for the weak acid (BH⁺) and the initial concentration and concentration at equilibrium is given as:</u></em>
Reaction involved: BH⁺ + H₂O ⇌ B + H₃O+
Initial: 0.1 M x x
Change: -x +x +x
Equilibrium: 0.1 - x x x
<u>The acid dissociation constant: </u>![K_{a} = \frac{\left [B \right ] \left [H_{3}O^{+}\right ]}{\left [BH^{+} \right ]} = \frac{(x)(x)}{(0.1 - x)} = \frac{x^{2}}{0.1 - x}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5Cleft%20%5BB%20%5Cright%20%5D%20%5Cleft%20%5BH_%7B3%7DO%5E%7B%2B%7D%5Cright%20%5D%7D%7B%5Cleft%20%5BBH%5E%7B%2B%7D%20%5Cright%20%5D%7D%20%3D%20%5Cfrac%7B%28x%29%28x%29%7D%7B%280.1%20-%20x%29%7D%20%3D%20%5Cfrac%7Bx%5E%7B2%7D%7D%7B0.1%20-%20x%7D)





<u>Therefore, the concentration of hydrogen ion: x = 3.6 × 10⁻⁶ M</u>
Now, pH = - ㏒ [H⁺] = - ㏒ (3.6 × 10⁻⁶ M) = 5.44
<u>Therefore, the pH of 0.1 M BH⁺ClO₄⁻ solution is 5.44</u>
Answer : The cell potential for this reaction is 0.50 V
Explanation :
The given cell reactions is:

The half-cell reactions are:
Oxidation half reaction (anode): 
Reduction half reaction (cathode): 
First we have to calculate the cell potential for this reaction.
Using Nernest equation :
![E_{cell}=E^o_{cell}-\frac{2.303RT}{nF}\log \frac{[Zn^{2+}]}{[Pb^{2+}]}](https://tex.z-dn.net/?f=E_%7Bcell%7D%3DE%5Eo_%7Bcell%7D-%5Cfrac%7B2.303RT%7D%7BnF%7D%5Clog%20%5Cfrac%7B%5BZn%5E%7B2%2B%7D%5D%7D%7B%5BPb%5E%7B2%2B%7D%5D%7D)
where,
F = Faraday constant = 96500 C
R = gas constant = 8.314 J/mol.K
T = room temperature = 
n = number of electrons in oxidation-reduction reaction = 2
= standard electrode potential of the cell = +0.63 V
= cell potential for the reaction = ?
= 3.5 M
= 
Now put all the given values in the above equation, we get:


Therefore, the cell potential for this reaction is 0.50 V
Answer:
Fe2O3 + 3CO → 2Fe + 3CO2
Explanation:
the numbers in front are the numbers you need
Why do molecules combined into chains?
Answer:
Explanation:
A. The charge on an element is determined by the differences between the number of protons and electrons in an atom.
An atom will have no charges if the number of protons and electrons are the same.
- When an atom loses or gains electrons, the number of electrons will either decrease or increase
- if the number of electrons is more than the number of protons, the excess electrons is the charge on the atom. And this makes the atom become a negatively charged ion.
- if the number of electrons is lesser than the number of protons, the deficient electrons makes the atom a positively charged ion. The number of electrons by which the atom is deficient makes the atom a positively charged ion.
Charge = number of protons - number of electrons
B. Electrons form the charges they do because with the charge, they become stable like the noble gases.
The desire of every atom is to have stable electronic configuration like those of the noble gases.
A potassium atom with a configuration 2 8 8 1 will prefer to lose an electron to become an Argon atom making the ion stable.