Answer:
C. 85%
Explanation:
A cylinder fitted with a piston exists in a high-pressure chamber (3 atm) with an initial volume of 1 L. If a sufficient quantity of a hydrocarbon material is combusted inside the cylinder to produce 1 kJ of energy, and if the volume of the chamber then increases to 1.5 L, what percent of the fuel's energy was lost to friction and heat?
A. 15%
B. 30%
C. 85%
D. 100%
work done by the system will be
W=PdV
p=pressure
dV=change in volume
3tam will be changed to N/m^2
3*1.01*10^5
W=3.03*10^5*(1.5-1)
convert 0.5L to m^3
5*10^-4
W=3.03*10^5*5*10^-4
W=152J
therefore
to find the percentage used
152/1000*100
15%
100%-15%
85% uf the fuel's energy was lost to friction and heat
DNA
DNA provides the set of instructions that tell the organism how to form
Answer:
is high as 100 degrees c
Explanation:
due to high heat gas expands fast than normal
Answer:
b Day-to-day condition of the atmosphere
Explanation:
Weather is short term, Climate is long term
Part a
Answer: NO
We need to calculate the distance traveled once the brakes are applied. Then we would compare the distance traveled and distance of the barrier.
Using the second equation of motion:

where s is the distance traveled, u is the initial velocity, t is the time taken and a is the acceleration.
It is given that, u=86.0 km/h=23.9 m/s, t=0.75 s, 

Since there is sufficient distance between position where car would stop and the barrier, the car would not hit it.
Part b
Answer: 29.6 m/s
The maximum distance that car can travel is 
The acceleration is same, 
The final velocity, v=0
Using the third equation of motion, we can find the maximum initial velocity for car to not hit the barrier:

Hence, the maximum speed at which car can travel and not hit the barrier is 29.6 m/s.