Answer:
c. No. An equation may have consistent units but still be numerically invaid.
Explanation:
For an equation to be corrected, it should have consistent units and also be numerically correct.
Most equation are of the form;
(Actual quantity) = (dimensionless constant) × (dimensionally correct quantity)
From the above, without the dimensionless constant the equation would be numerically wrong.
For example; Kinetic energy equation.
KE = 0.5(mv^2)
Without the dimensionless constant '0.5' the equation would be dimensionally correct but numerically wrong.
Answer:
The normal force the ground exerts on the block, F = -300 N
Explanation:
Given data,
The block pulled up with a tension force, T = 100 N
The weight of the block, W = 300 N
The weight of the block is due to the force of attraction of gravitation.
The surface exerts a force that is equal and opposite to the force acting on the block due to gravitation.
The weight of the block,
W = mg
300 N
The normal force the ground exerts on the block,
F = - mg
= - 300 N
Hence, the normal force the ground exerts on the block, F = -300 N
<em>Answer:</em>
<em>The answers are: </em>
- <em>A-which is the image is always right side up.</em>
- <em>E-the image is virtual</em>
<em></em>
<em>Explanation: MY EXPLANATION IS YOU ARE WELCOME BIG DOG 100..</em>
<em></em>
<h2 />
The greater the mass, the greater the fiction generated
Answer:
The angle for the forward Mach line is 19.47°
The angle for the rearward Mach line is 5.21°
Explanation:
From table A-1 (Modern Compressible Flow: with historical perspective):
(M₁ = 3)
If Po₁ = Po₂
Table A-1:
Table A-5:
v₁ = 49.76°
μ₁ = 19.47°
v₂ = 60.55°
μ₂ = 16°
θ = 60.55 - 49.76 = 10.79°
The angle for the forward Mach line is:
μ₁ = 19.47°
The angle for the rearward Mach line is:
θr = μ₂ - θ = 16 - 10.79 = 5.21°