Answer:
hmmmmmmmm
Explanation:
mmmmmmmmmmmmmmmmmmmmmmm pay attention in class kid
Answer:
0.0196 j
Explanation:
i) The formula for kinetic energy is as follows: 0.5*m*v^2
ii) Since we have all the values all that's left is to plug them into the equation
iii) First, WE MUST, Convert grams into kgs as this is the SI unit of mass so 2.45/1000
iv) All that's left now is to plug it into the equation so:
0.5* (s.45/1000)*(4^2)
v) Lastly we add the unit joules at the end as we're talking about energy
Hope this was useful! :)
Answer:
V1 = 2221.33 L
Explanation:
The system is about a ideal gas. Then you can use the equation for ideal gases for a volume V1, temperature T1 and pressure P1:
(1)
And also for the situation in which the variables T, V and P has changed:
(1)
R: constant of ideal gases = 0.082 L.atm/mol.K
For both cases (1) and (2) the number of moles are the same. Next, you solve for n in (1) and (2):

Next, you equal these equations an solve for T2:

Finally you replace the values of P2, V2, T1 and T2:

Hence, the initial volume of the gas is 2221.33 L
the purpose of using a chemical equation is to know the reactants and products that occur.
reactants=starting material
products=end result