Answer:
newton's first law
Explanation:
this is because newton's first law of motion states that every object will continue in its state of rest or uniform motion in a straight line unless a resultant force acts on it.
hope this helps, if you want more elaboration, tell me
Answer:
The answer to your question: d.
Explanation:
a. The rate of change of momentum of an object is equal to the net force applied to the object.
This is the second a law of motion, so this answer is incorrect.
b. In the absence of a net force acting on it, an object moves with constant velocity.
This is the first Newton law of motion, so this option is not correct.
c. For any force, there always is an equal and opposite reaction force.
This is the third law of motion, so this is not the right option.
d. What goes up must come down.
Newton said this sentence, but is not part of the law of motion.
The best thing to do in order to calculate the distance of the ball taht would have traveled when it hits the ground for the fourth time is to list the height everytime it bounces. We calculate as follows:
<span>12+6+6+3+3+1.5+1.5 = 33 feet</span>
Here, you need to use your "Protractor" as it is given in the question, but we can calculate the value with the help of our mathematical calculation too:
[ Protractor can be use only in real life, not here ]
Draw an imaginary line from initial position to final position.
Now, In that triangle, tan x = P/B
tan x = 1.4 / 2
tan x = 0.70
x = tan⁻¹ (0.70)
x = 35 [ tan 35 = 0.70 ]
In short, Your Answer would be 35 degrees
Hope this helps!
Answer:
y = 2.74 m
Explanation:
The linear thermal expansion processes are described by the expression
ΔL = α L ΔT
Where α the thermal dilation constant for concrete is 12 10⁻⁶ºC⁻¹, ΔL is the length variation and ΔT the temperature variation in this case 20ªc
If the bridge is 250 m long and is covered by two sections each of them must be L = 125 m, let's calculate the variation in length
ΔL = 12 10⁻⁶ 125 20
ΔL = 3.0 10⁻² m
Let's use trigonometry to find the height
The hypotenuse Lf = 125 + 0.03 = 125.03 m
Adjacent leg L₀ = 125 m
cos θ = L₀ / Lf
θ = cos⁻¹ (L₀ / Lf)
θ = cos⁻¹ (125 / 125.03)
θ = 1,255º
We calculate the height
tan 1,255 = y / x
y = x tan 1,255
y = 125 tan 1,255
y = 2.74 m