Answer:
d
= m× λ⇒ d = λ ×m×l / x
= 630×
m × 3×3m/ 45×
m
= 1.26×
m
Explanation:
the above calculation is based on Young’s double slit experiment where the two slits provide two coherent light sources which results either constructive interference or destructive interference when passing through a double slit.
Answer:
Choice A.
Nearness to a body of water causes an increase in humidity, due to the higher rate of evaporation.
Answer:
we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level
for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.
Explanation:
A student throws a small rock straight upwards. The rock rises to its highest point and then falls back down. How does the speed of the rock at 2m on the way down compare with its speed at 2m on the way up?
It decreases in speed on its way down and increases in speed on its way down.
it decreases in speed on its way up because the the vertical motion is against the earths gravitational pull on an object to the earth's center
.It increases in speed on his way down because its under the influence of gravity
from newton's equation of motion we can check by
using V^2=u^2+2as
we assume that it starts with a velocity of 10m/s. At 2m height above ground level, its velocity decreases at 3m above ground level
for its way down the velocity at 3m on its way down is more than its velocity at 2m on its way down.
Strange as it may seem, the object would keep moving, in a straight line and at the same speed, until it came near another object. Its momentum and kinetic energy would never change. It might continue like that for a billion years or more.
Have a look at Newton's first law of motion.
Yes all those are correct, but I don't know what the question was