<h3>
Answer:</h3>
5.71 × 10² nm
<h3>
Explanation:</h3>
The product of wavelength and frequency of a wave gives the speed of the wave.
Therefore;
Velocity of wave = Wavelength × Frequency
c = f ×λ
In our case;
Frequency = 5.25 × 10^14 Hz
Speed of light = 2.998 × 10^8m/s
But;
λ = c ÷ f
= 2.998 × 10^8m/s ÷ 5.25 × 10^14 Hz
= 5.71 × 10^-7 m
But; 1 M = 10^9 nm
Therefore;
wavelength = 5.71 × 10^-7 × 10^9
= 5.71 × 10² nm
The wavelength of light wave 5.71 × 10² nm
The answer for the following mention bellow.
- <u><em>Therefore the final temperature of the gas is 260 k</em></u>
Explanation:
Given:
Initial pressure (
) = 150.0 kPa
Final pressure (
) = 210.0 kPa
Initial volume (
) = 1.75 L
Final volume (
) = 1.30 L
Initial temperature (
) = -23°C = 250 k
To find:
Final temperature (
)
We know;
According to the ideal gas equation;
P × V = n × R ×T
where;
P represents the pressure of the gas
V represents the volume of the gas
n represents the no of moles of the gas
R represents the universal gas constant
T represents the temperature of the gas
We know;
= constant
×
= 
Where;
(
) represents the initial pressure of the gas
(
) represents the final pressure of the gas
(
) represents the initial volume of the gas
(
) represents the final volume of the gas
(
) represents the initial temperature of the gas
(
) represents the final temperature of the gas
So;
= 
(
) =260 k
<u><em>Therefore the final temperature of the gas is 260 k</em></u>
<u><em></em></u>
This is categorized as a combustion reaction.
Hydrogen + oxygen --> water
2,1g + 16,8g = x
x = 18,9g