Answer:
gauge pressure is 133 kPa
Explanation:
given data
initial temperature T1 = 27°C = 300 K
gauge pressure = 300 kPa = 300 × 10³ Pa
atmospheric pressure = 1 atm
final temperature T2 = 77°C = 350 K
to find out
final pressure
solution
we know that gauge pressure is = absolute pressure - atmospheric pressure so
P (gauge ) = 300 × 10³ Pa - 1 ×
Pa
P (gauge ) = 2 ×
Pa
so from idea gas equation
................1
so
P2 = 2.33 ×
Pa
so gauge pressure = absolute pressure - atmospheric pressure
gauge pressure = 2.33 ×
- 1.0 ×
gauge pressure = 1.33 ×
Pa
so gauge pressure is 133 kPa
Answer:
Helps to accurately calculate job costs
Explanation:
please mark me as brainliest
Answer:
component of acceleration are a = 3.37 m/s² and ar = 22.74 m/s²
magnitude of acceleration is 22.98 m/s²
Explanation:
given data
velocity = 10 m/s
initial time to = 0
distance s = 400 m
time t = 14 s
to find out
components and magnitude of acceleration after the car has travelled 200 m
solution
first we find the radius of circular track that is
we know distance S = 2πR
400 = 2πR
R = 63.66 m
and tangential acceleration is
S = ut + 0.5 ×at²
here u is initial speed and t is time and S is distance
400 = 10 × 14 + 0.5 ×a (14)²
a = 3.37 m/s²
and here tangential acceleration is constant
so velocity at distance 200 m
v² - u² = 2 a S
v² = 10² + 2 ( 3.37) 200
v = 38.05 m/s
so radial acceleration at distance 200 m
ar = 
ar = 
ar = 22.74 m/s²
so magnitude of total acceleration is
A = 
A = 
A = 22.98 m/s²
so magnitude of acceleration is 22.98 m/s²
Answer:
Automatic transmissions should be in Drive and Manual transmissions should be in first gear.