1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
photoshop1234 [79]
3 years ago
5

Please Help !!

Engineering
1 answer:
Alla [95]3 years ago
4 0

Answer:

how are we supposed to help?

You might be interested in
Someone has suggested that the air-standard Otto cycle is more accurate if the two polytropic processes are replaced with isentr
omeli [17]

Answer:

q_net,in = 585.8 KJ/kg

q_net,out = 304 KJ/kg

n = 0.481

Explanation:

Given:

- The compression ratio r = 8

- The pressure at state 1, P_1 = 95 KPa

- The minimum temperature at state 1, T_L = 15 C

- The maximum temperature T_H = 900 C

- Poly tropic index n = 1.3

Find:

a) Determine the heat transferred to and rejected from this cycle

b) cycle’s thermal efficiency

Solution:

- For process 1-2, heat is rejected to sink throughout. The Amount of heat rejected q_1,2, can be computed by performing a Energy balance as follows:

                                   W_out - Q_out = Δ u_1,2

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                         c_v*(T_2 - T_L) = R*(T_2 - T_L)/n-1 - q_1,2

- Using polytropic relation we will convert T_2 = T_L*r^(n-1):

                  c_v*(T_L*r^(n-1) - T_L) = R*(T_1*r^(n-1) - T_L)/n-1 - q_1,2

- Hence, we have:

                             q_1,2 = T_L *(r^(n-1) - 1)* ( (R/n-1) - c_v)

- Plug in the values:

                             q_1,2 = 288 *(8^(1.3-1) - 1)* ( (0.287/1.3-1) - 0.718)

                            q_1,2= 60 KJ/kg

- For process 2-3, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                          Q_in = Δ u_2,3

                                         q_2,3 = u_3 - u_2

                                         q_2,3 = c_v*(T_H - T_2)  

- Again, using polytropic relation we will convert T_2 = T_L*r^(n-1):

                                         q_2,3 = c_v*(T_H - T_L*r^(n-1) )    

                                         q_2,3 = 0.718*(1173-288*8(1.3-1) )

                                        q_2,3 = 456 KJ/kg

- For process 3-4, heat is transferred into the system. The Amount of heat added q_2,3, can be computed by performing a Energy balance as follows:

                                     q_3,4 - w_in = Δ u_3,4

- Assuming air to be an ideal gas, and the poly-tropic compression process is isentropic:

                           c_v*(T_4 - T_H) = - R*(T_4 - T_H)/1-n +  q_3,4

- Using polytropic relation we will convert T_4 = T_H*r^(1-n):

                  c_v*(T_H*r^(1-n) - T_H) = -R*(T_H*r^(1-n) - T_H)/n-1 + q_3,4

- Hence, we have:

                             q_3,4 = T_H *(r^(1-n) - 1)* ( (R/1-n) + c_v)

- Plug in the values:

                             q_3,4 = 1173 *(8^(1-1.3) - 1)* ( (0.287/1-1.3) - 0.718)

                            q_3,4= 129.8 KJ/kg

- For process 4-1, heat is lost from the system. The Amount of heat rejected q_4,1, can be computed by performing a Energy balance as follows:

                                          Q_out = Δ u_4,1

                                         q_4,1 = u_4 - u_1

                                         q_4,1 = c_v*(T_4 - T_L)  

- Again, using polytropic relation we will convert T_4 = T_H*r^(1-n):

                                         q_4,1 = c_v*(T_H*r^(1-n) - T_L )    

                                         q_4,1 = 0.718*(1173*8^(1-1.3) - 288 )

                                        q_4,1 = 244 KJ/kg

- The net gain in heat can be determined from process q_3,4 & q_2,3:

                                         q_net,in = q_3,4+q_2,3

                                         q_net,in = 129.8+456

                                         q_net,in = 585.8 KJ/kg

- The net loss of heat can be determined from process q_1,2 & q_4,1:

                                         q_net,out = q_4,1+q_1,2

                                         q_net,out = 244+60

                                         q_net,out = 304 KJ/kg

- The thermal Efficiency of a Otto Cycle can be calculated:

                                         n = 1 - q_net,out / q_net,in

                                         n = 1 - 304/585.8

                                         n = 0.481

6 0
3 years ago
technician a says that the higher the gear selected the more torque is available. technician b says that a transaxle contains ge
umka21 [38]

Technician A is correct. Technician B is wrong because a gear's transmission is used to increase or decrease torque.

The relation torque is relying on multiplying the circumferential detail with the resource of the usage of the radius; massive gears experience a greater amount of torque, at the same time as smaller gears experience a great deal much less torque. Similarly, the torque ratio is equal to the ratio of the gears' radii. A gear's transmission torque modifications as it will boom or decreases speed. Commonly, with the resource of the usage of lowering the speed, a small torque on the doorway issue is transferred as a massive torque at the output issue. The calculation of torque is quantified with the resource of the usage of an extensive form of teeth.

Learn more about the torque at brainly.com/question/28220969

#SPJ4

3 0
1 year ago
Fuel filters are being replaced on a HPCR diesel
saw5 [17]

Answer:) The correct answer is B. at the end of the fuel rail.

2) The one who is correct is the Technician A.

Explanation:

7 0
3 years ago
What is the name of the first federation vessel in star trek hint 17?
Nitella [24]

Answer:

The Fesarius

Explanation:

It's the first vessel

7 0
2 years ago
A 4-pole, 3-phase induction motor operates from a supply whose frequency is 60 Hz. calculate: 1- the speed at which the magnetic
DiKsa [7]

Answer:

The answer is below

Explanation:

1) The synchronous speed of an induction motor is the speed of the magnetic field of the stator. It is given by:

n_s=\frac{120f_s}{p}\\ Where\ p\ is \ the \ number\ of\ machine\ pole, f_s\ is\ the\ supply \ frequency\\and\ n_s\ is \ the \ synchronous\ speed(speed \ of\ stator\ magnetic \ field)\\Given: f_s=60\ Hz, p=4. Therefore\\\\n_s=\frac{120*60}{4}=1800\ rpm

2) The speed of the rotor is the motor speed. The slip is given by:

Slip=\frac{n_s-n_m}{n_s}. \\ n_m\ is\ the \ motor\ speed(rotor\ speed)\\Slip = 0.05, n_s= 1800\ rpm\\ \\0.05=\frac{1800-n_m}{1800}\\\\ 1800-n_m=90\\\\n_m=1800-90=1710\ rpm

3) The frequency of the rotor is given as:

f_r=slip*f_s\\f_r=0.04*60=2.4\ Hz

4) At standstill, the speed of the motor is 0, therefore the slip is 1.

The frequency of the rotor is given as:

f_r=slip*f_s\\f_r=1*60=60\ Hz

6 0
3 years ago
Other questions:
  • Given int variables k and total that have already been declared, use a do...while loop to compute the sum of the squares of the
    15·1 answer
  • A groundwater contains the following cations (expressed as the cation):
    5·2 answers
  • Local technology is foundation for modern technology? justufy this statement with example.​
    12·1 answer
  • Convert 25 mm into in.
    13·1 answer
  • Draw the sequence of BSTs that results when you insert the keys E, A, S, Y, Q, U, E, S, T, I, O, N, in that order into an initia
    10·1 answer
  • On a cold winter day, wind at 55 km/hr is blowing parallel to a 4-m high and 10-m long wall of a house. If the air outside is at
    8·1 answer
  • Implement a program that manages shapes. Implement a class named Shape with a method area() which returns the double value 0.0.
    8·1 answer
  • Can someone help me plz!!
    13·1 answer
  • What kinds of problems or projects would a mechanical engineer work on?
    11·1 answer
  • 9. An automobile's oxygen sensor output needs
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!