1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Jet001 [13]
3 years ago
11

What mass of LP gas is necessary to heat 1.4 L of water from room temperature (25.0 ∘C) to boiling (100.0 ∘C)? Assume that durin

g heating, 16% of the heat emitted by the LP gas combustion goes to heat the water. The rest is lost as heat to the surroundings. Express your answer using two significant figures.
Engineering
1 answer:
DochEvi [55]3 years ago
6 0

Answer:

m_{LP}=0.45\,kg

Explanation:

Let assume that heating and boiling process occurs under an athmospheric pressure of 101.325 kPa. The heat needed to boil water is:

Q_{water} = (1.4\,L)\cdot(\frac{1\,m^{3}}{1000\,L} )\cdot (1000\,\frac{kg}{m^{3}} )\cdot [(4.187\,\frac{kJ}{kg\cdot ^{\textdegree}C} )\cdot (100^{\textdegree}C-25^{\textdegree}C)+2257\,\frac{kJ}{kg}]

Q_{water} = 3599.435\,kJ

The heat liberated by the LP gas is:

Q_{LP} = \frac{3599.435\,kJ}{0.16}

Q_{LP} = 22496.469\,kJ

A kilogram of LP gas has a minimum combustion power of 50028\,kJ. Then, the required mass is:  

m_{LP} = \frac{22496.469\,kJ}{50028\,\frac{kJ}{kg} }

m_{LP}=0.45\,kg

You might be interested in
Steam at 40 bar and 500o C enters the first-stage turbine with a volumetric flow rate of 90 m3 /min. Steam exits the turbine at
a_sh-v [17]

Answer:

(a) 62460 kg/hr

(b) 17,572.95 kW

(c) 3,814.57 kW

Explanation:

Volumetric flow rate, G = 30 m³ / 1 min => 90 / 60 => 1.5

Calculate for h₁ , h₂ , h₃

h₁ is h at P = 40 bar, 500°C => 3445.84 KJ/Kg

Specific volume steam, ц = 0.086441 m³kg⁻¹

h₂ is h at P = 20 bar, 400°C => 3248.23 KJ/Kg

h₃ is h at P = 20 bar, 500°C => 3468.09 KJ/Kg

h₄ is hg at P = 0.6 bar from saturated water table => 2652.85 KJ/Kg

a)

Mass flow rate of the steam, m = G / ц

m = 1.5 / 0.086441

m = 17.35 kg/s

mass per hour is m = 62460 kg/hr

b)

Total Power produced by two stages

= m (h₁ - h₂) + m (h₃ - h₁)

= m [(3445.84 - 3248.23) + (3468.09 - 2652.85)]

= m [ 197.61 + 815.24 ]

= 17.35 [1012.85]

= 17,572.95 kW

c)

Rate of heat transfer to the steam through reheater

= m (h₃ - h₂)

= 17.35 x (3468.09 - 3248.23)

= 17.35 x 219.86

= 3,814.57 kW

8 0
3 years ago
For a steel alloy it has been determined that a carburizing heat treatment of 15 h duration will raise the carbon concentration
Amiraneli [1.4K]

Answer:

135 hour

Explanation:

It is given that a carburizing heat treatment of 15 hour will raise the carbon concentration by 0.35 wt% at a point of 2 mm from the surface.

We have to find the time necessary to achieve the same concentration at a 6 mm position.

we know that \frac{x_1^2}{Dt}=constant where x is distance and t is time .As the temperature is constant so D will be also constant

So \frac{x_1^2}{t}=constant

then \frac{x_1^2}{t_1}=\frac{x_2^2}{t_2} we have given x_1=2 mm\ ,t_1=15 hour\ ,x_2=6\ mm and we have to find t_2 putting all these value in equation

\frac{2^2}{15}=\frac{6^2}{t_2}

so t_2=135\ hour

5 0
3 years ago
Three point charges, each with q = 3 nC, are located at the corners of a triangle in the x-y plane, with one corner at the origi
lawyer [7]

Answer:

\vec F_{A} = -67500\,N\cdot (i + j)

Explanation:

The position of each point are the following:

A = (0\,m,0\,m,0\,m), B = (0.02\,m,0\,m,0\,m), C = (0\,m,0.02\,m,0\,m)

Since the three objects report charges with same sign, then, net force has a repulsive nature. The net force experimented by point charge A is:

\vec F_{A} = \vec F_{AB} + \vec F_{AC}

\vec F_{A} = -\frac{k\cdot q^{2}}{r_{AB}^{2}}\cdot i - \frac{k\cdot q^{2}}{r_{AC}^{2}}\cdot j

\vec F_{A} = - \frac{k\cdot q^{2}}{r^{2}} \cdot (i + j)

\vec F_{A} = -\frac{(9 \times 10^{9}\,\frac{N\cdot m^{2}}{C^{2}} )\cdot (3\times 10^{-9}\,C)}{(0.02\,m)^{2}}\cdot (i + j)

\vec F_{A} = -67500\,N\cdot (i + j)

6 0
3 years ago
You are to design two CONCEPTUALLY different synchronous state machines (Mealy and Moore) that perform the task described below.
allochka39001 [22]
Answer:








Explanation:









I hope this helps!
3 0
3 years ago
If you replace the text value in an associative dimension, the text value will not change when the
Nostrana [21]

Answer:

C

Explanation:

7 0
3 years ago
Other questions:
  • Which type of inappropriate practice most likely occurred if a researcher takes credit for someone else’s idea and does not ackn
    11·1 answer
  • 8. In a closed hydraulic brake system, the hydraulic pressure:
    8·2 answers
  • In poor weather, you should _______ your following distance.
    10·1 answer
  • What is the steady-state value of the output of a system with transfer function G(s)= 6/(12s+3), subject to a unit-step input?
    5·1 answer
  • An inventor tries to sell you his new heat engine that takes in 40 J of heat at 87°C on each cycle, expels 30 J at 27°C, and doe
    14·1 answer
  • A battery with an f.e.m. of 12 V and negligible internal resistance is connected to a resistor of 545 How much energy is dissipa
    9·1 answer
  • What material are the rocker/valve cover gaskets made out of?
    5·1 answer
  • It is acceptable to mix used absorbents.
    15·1 answer
  • Find the differential and evaluate for the given x and dx: y=sin2xx,x=π,dx=0.25
    13·1 answer
  • Reason fo I.EE regulations in electrical installations​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!