Answer:
Magnitude the net torque about its axis of rotation is 2.41 Nm
Solution:
As per the question:
The radius of the wrapped rope around the drum, r = 1.33 m
Force applied to the right side of the drum, F = 4.35 N
The radius of the rope wrapped around the core, r' = 0.51 m
Force on the cylinder in the downward direction, F' = 6.62 N
Now, the magnitude of the net torque is given by:

where
= Torque due to Force, F
= Torque due to Force, F'


Now,


The net torque comes out to be negative, this shows that rotation of cylinder is in the clockwise direction from its stationary position.
Now, the magnitude of the net torque:

let us consider that the two charges are of opposite nature .hence they will constitute a dipole .the separation distance is given as d and magnitude of each charges is q.
the mathematical formula for potential is 
for positive charges the potential is positive and is negative for negative charges.
the formula for electric field is given as-
for positive charges,the line filed is away from it and for negative charges the filed is towards it.
we know that on equitorial line the potential is zero.hence all the points situated on the line passing through centre of the dipole and perpendicular to the dipole length is zero.
here the net electric field due to the dipole can not be zero between the two charges,but we can find the points situated on the axial line but outside of charges where the electric field is zero.
now let the two charges of same nature.let these are positively charged.
here we can not find a point between two charges and on the line joining two charges where the potential is zero.
but at the mid point of the line joining two charges the filed is zero.
As the Earth rotates, it also moves, or revolves, around the Sun. ... As the Earth orbits the Sun, the Moon orbits the Earth. The Moon's orbit lasts 27 1/2 days, but because the Earth keeps moving, it takes the Moon two extra days, 29 1/2, to come back to the same place in our sky.
Answer:
The final velocity of the ball is 39.2 m/s.
Explanation:
Given that,
A ball is dropped from rest from a high window of a tall building.
Time = 4 sec
We need to calculate the final velocity of the ball
Using equation if motion

Where, v = final velocity
u = initial velocity
g = acceleration due to gravity
t = time
Put the value into the formula


Hence, The final velocity of the ball is 39.2 m/s.
Answer:
Explanation:
the one thrown below the horizontal is going straight down, while the one above the horizontal will experience a projectile motion which will makes it move farther away from the building where it was projected.