Answer:
L = mp*v₀*(ms*D) / (ms + mp)
Explanation:
Given info
ms = mass of the hockey stick
uis = 0 (initial speed of the hockey stick before the collision)
xis = D (initial position of center of mass of the hockey stick before the collision)
mp = mass of the puck
uip = v₀ (initial speed of the puck before the collision)
xip = 0 (initial position of center of mass of the puck before the collision)
If we apply
Ycm = (ms*xis + mp*xip) / (ms + mp)
⇒ Ycm = (ms*D + mp*0) / (ms + mp)
⇒ Ycm = (ms*D) / (ms + mp)
Now, we can apply the equation
L = m*v*R
where m = mp
v = v₀
R = Ycm
then we have
L = mp*v₀*(ms*D) / (ms + mp)
The change in the state of matter causes change in the motion of the particles of the matter. The gaseous state of matter has the greatest speed while the solid state has the least speed.
The change in state of every matter is accompanied by lost or gained of energy.
Example is water.
The solid state of water is ice. The motion of particles of the water is relatively zero because the molecules are held at a fixed position.
The liquid state of water occurs when the temperature of the ice is increased above zero degree Celsius. The speed of the particles of water in liquid state is greater than solid state.
The gaseous state of water occurs when the temperature of the liquid water is increased beyond 100 degree Celsius. The speed of water in gaseous state is greater than liquid state.
Learn more about different state of matter here: brainly.com/question/9402776
Answer:
athe answer to this question is Synex BA-315
Hi there!
We can use impulse for this situation:
I = Δp = mΔv
Impulse = Force × time, so:
I = 63.9(24) = 1533.6 Ns
Find force by dividing by time:
I/t = 1533.6/1.2 = 1278 N