Answer:
1. 0.574 kJ/kg
2. 315.7 MW
Explanation:
1. The mechanical energy per unit mass of the river is given by:


Where:
Ek is the kinetic energy
Ep is the potential energy
v is the speed of the river = 3 m/s
g is the gravity = 9.81 m/s²
h is the height = 58 m

Hence, the total mechanical energy of the river is 0.574 kJ/kg.
2. The power generation potential on the river is:

Therefore, the power generation potential of the entire river is 315.7 MW.
I hope it helps you!
A wave looses its power as it comes to shore because it gets less deeper every second it gets closer to shore
Answer:
F₁ = 4 F₀
Explanation:
The force applied on the string by the ball attached to it, while in circular motion will be equal to the centripetal force. Therefore, at time t₀, the force on ball F₀ is given as:
F₀ = mv₀²/r --------------- equation (1)
where,
F₀ = Force on string at t₀
m = mass of ball
v₀ = speed of ball at t₀
r = radius of circular path
Now, at time t₁:
v₁ = 2v₀
F₁ = mv₁²/r
F₁ = m(2v₀)²/r
F₁ = 4 mv₀²/r
using equation (1):
<u>F₁ = 4 F₀</u>
Not 100% but i think it'll cause the earth to rotate slightly slower, its definitely not the last one though
Answer:
650.65 K or 377.5°C
Explanation:
Area = A = 10 m²
Thickness of wall = L = 2.5 cm = 2.5×10⁻² m
Inner surface temperature of wall =
= 415°C = 688.15 K
Outer surface temperature of wall = 
Heat loss through the wall = 3 kW = 3×10³ W
Thermal conductivity of wall = k = 0.2 W/m K
Assumptions made here as follows
- There is not heat generation in the wall itself
- The heat conduction is one dimensional
- Heat flow follows steady state
- The material has same properties in all directions i.e., it is homogeneous.
Considering the above assumptions we use the following formula

∴ The temperature of the outer surface of the wall is 650.65 K or 377.5°C