Answer:
187.38 m
Explanation:
Using the equation of motion
s = ut + 1/2gt²...................... Equation 1
Where s = distance of fall, u = initial velocity of the rock, t = time taken for the rock to fall from rest, g = acceleration due to gravity of venus.
Given: u = 0 m/s ( from rest), t = 6.5 s, g = 8.87 m/s².
substituting into equation 1
s = 0(6.5) + 1/2(8.87)(6.5)²
s = 0 + 374.7575/2
s = 187.38 m.
Hence the rock will fall 187.38 m
Answer:
y = k/x
Explanation:
y = k/x is a graph of a hyperbola that has been rotated about the origin.
Explanation:
The pressure exerted by a column of liquid of height h and density ρ is given by the hydrostatic pressure equation p = ρgh, where g is the gravitational acceleration
Answer: Eclipse
Explanation: A lunar eclipse occurs when the full moon moves through the shadow of the Earth. This can only happen when the Earth is between the Moon and the Sun and all three are lined up in the same plane, called the ecliptic. The ecliptic is the plane of Earth's orbit around the Sun.
<h2>
After 26.28 seconds projectile returns 26.28 seconds.</h2>
Explanation:
Initial velocity = 450 ft/s = 137.16 m/s
Angle, θ = 70°
Consider the vertical motion of projectile,
When the projectile return to the ground we have
Displacement, s = 0 m
Acceleration, a = -9.81 m/s²
Initial velocity, u = 137.16 x sin70 = 128.89 m/s
Substituting in s = ut + 0.5 at²
s = ut + 0.5 at²
0 = 128.89 x t + 0.5 x (-9.81) x t²
t² - 26.28 t = 0
t ( t- 26.28) = 0
t = 0 s or t = 26.28 s
After 26.28 seconds projectile returns 26.28 seconds.