1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alexandr402 [8]
3 years ago
8

What is true of chlorine?

Chemistry
1 answer:
Fittoniya [83]3 years ago
5 0

Answer:

A or C because they both kinda are the same

You might be interested in
What will happened to the rock cycle without erosion
mr_godi [17]
Wind ,ice,and water eroded it over years
4 0
3 years ago
Read 2 more answers
Naoki's bicycle has a mass of 10 kg. If Naoki sits on her bicycle and starts pedaling with a force of 168 N, causing an accelera
White raven [17]

Answer:

50 kg

Explanation:

Data:

Mass of bicycle = 10 kg

                       F = 168 N

                       a = 2.8 m/s²

Calculation:

                     F = ma     Divide each side by m, Then

                 m = F/a

                     = 168/2.8

                      = 60 kg

                 m = mass of bicycle + Naoki's mass. Then

                60 = 10 + Naoki's mass     Subtract 10 from each side

Naoki's mass = 50 kg

3 0
3 years ago
What is the number assigned to an element on the Periodic Table?
spayn [35]

Answer:

Element Atomic Number One number you will find on all periodic tables is the atomic number for each element.

Explanation:

<em>hope it helps :))</em>

6 0
2 years ago
A 20.0 mL 0.100 M solution of lactic acid is titrated with 0.100 M NaOH.
yan [13]

Answer:

(a) See explanation below

(b) 0.002 mol

(c) (i) pH = 2.4

(ii) pH = 3.4

(iii) pH = 3.9

(iv) pH = 8.3

(v) pH = 12.0

Explanation:

(a) A buffer solution exits after addition of 5 mL of NaOH  since after reaction we will have  both the conjugate base lactate anion and unreacted weak  lactic acid present in solution.

Lets call lactic acid HA, and A⁻ the lactate conjugate base. The reaction is:

HA + NaOH ⇒ A⁻ + H₂O

Some unreacted HA will remain in solution, and since HA is a weak acid , we will have the followin equilibrium:

HA  + H₂O ⇆ H₃O⁺ + A⁻

Since we are going to have unreacted acid, and some conjugate base, the buffer has the capacity of maintaining the pH in a narrow range if we add acid or base within certain limits.

An added acid will be consumed by the conjugate base A⁻ , thus keeping the pH more or less equal:

A⁻ + H⁺ ⇄ HA

On the contrary, if we add extra base it will be consumed by the unreacted lactic acid, again maintaining the pH more or less constant.

H₃O⁺ + B ⇆ BH⁺

b) Again letting HA stand for lactic acid:

mol HA =  (20.0 mL x  1 L/1000 mL) x 0.100 mol/L = 0.002 mol

c)

i) After 0.00 mL of NaOH have been added

In this case we just have to determine the pH of a weak acid, and we know for a monopric acid:

pH = - log [H₃O⁺] where  [H₃O⁺] = √( Ka [HA])

Ka for lactic acid = 1.4 x 10⁻⁴  ( from reference tables)

[H₃O⁺] = √( Ka [HA]) = √(1.4 x 10⁻⁴ x 0.100) = 3.7 x 10⁻³

pH = - log(3.7 x 10⁻³) = 2.4

ii) After 5.00 mL of NaOH have been added ( 5x 10⁻³ L x 0.1 = 0.005 mol NaOH)

Now we have a buffer solution and must use the Henderson-Hasselbach equation.

                            HA          +         NaOH          ⇒   A⁻ + H₂O

before rxn         0.002                  0.0005                0

after rxn    0.002-0.0005                  0                  0.0005

                        0.0015

Using Henderson-Hasselbach equation :

pH = pKa + log [A⁻]/[HA]

pKa HA = -log (1.4 x 10⁻⁴) = 3.85

pH = 3.85 + log(0.0005/0.0015)

pH = 3.4

iii) After 10.0 mL of NaOH have been ( 0.010 L x 0.1 mol/L = 0.001 mol)

                             HA          +         NaOH          ⇒   A⁻ + H₂O

before rxn         0.002                  0.001               0

after rxn        0.002-0.001                  0                  0.001

                        0.001

pH = 3.85 + log(0.001/0.001)  = 3.85

iv) After 20.0 mL of NaOH have been added ( 0.002 mol )

                            HA          +         NaOH          ⇒   A⁻ + H₂O

before rxn         0.002                  0.002                 0

after rxn                 0                         0                   0.002

We are at the neutralization point and  we do not have a buffer anymore, instead we just have  a weak base A⁻ to which we can determine its pOH as follows:

pOH = √Kb x [A⁻]

We need to determine the concentration of the weak base which is the mol per volume in liters.

At this stage of the titration we added 20 mL of lactic acid and 20 mL of NaOH, hence the volume of solution is 40 mL (0.04 L).

The molarity of A⁻ is then

[A⁻] = 0.002 mol / 0.04 L = 0.05 M

Kb is equal to

Ka x Kb = Kw ⇒ Kb = 10⁻¹⁴/ 1.4 x 10⁻⁴ = 7.1 x 10⁻¹¹

pOH is then:

[OH⁻] = √Kb x [A⁻]  = √( 7.1 x 10⁻¹¹ x 0.05) = 1.88 x 10⁻⁶

pOH = - log (  1.88 x 10⁻⁶ ) = 5.7

pH = 14 - pOH = 14 - 5.7 = 8.3

v) After 25.0 mL of NaOH have been added (

                            HA          +         NaOH          ⇒   A⁻ + H₂O

before rxn           0.002                  0.0025              0

after rxn                0                         0.0005              0.0005

Now here what we have is  the strong base sodium hydroxide and A⁻ but the strong base NaOH will predominate and drive the pH over the weak base A⁻.

So we treat this part as the determination of the pH of a strong base.

V= (20 mL + 25 mL) x 1 L /1000 mL = 0.045 L

[OH⁻] = 0.0005 mol / 0.045 L = 0.011 M

pOH = - log (0.011) = 2

pH = 14 - 1.95 = 12

7 0
2 years ago
Group I elements are metals with ................. density
kherson [118]

group 1 elements are metals with<u> low</u> density

8 0
3 years ago
Other questions:
  • How do electricity and magnetism interact?
    7·1 answer
  • Select the person responsible for the following: printing press
    13·1 answer
  • Read the following sentences: “This substance on copper is green. It is called verdigris. Paola said, ‘In Spanish, the word for
    8·1 answer
  • The Bohr model of an atom shows a nucleus with electrons circling around it. What does the Bohr model show that makes it a usefu
    11·1 answer
  • 45 grams of NaOH to moles
    6·1 answer
  • Element "Z" has 2 naturally occurring isotopes with the following masses and natural abundances:
    13·1 answer
  • Mass_mole relationship
    8·1 answer
  • The only pair that would result in a recessive phenotype is:
    15·2 answers
  • Which sentence from the article BEST describes HOW fireworks produce colors in the sky?
    13·1 answer
  • Is sugar a compound or a mixture?
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!