Answer:
B. ADDITION OF TWO GROUPS ACROSS A DOUBLE BOND
Explanation:
Addition reaction of alkenes involves the conversion of the double bond in alkenes Inyo single bonds by the addition of two groups of atoms or radicals.
During this addition reaction, two substances, an unsaturated compound(e.g. ethane) and an attacking reagent (hydrogen, halogens, hydrogen halides, chlorine and bromine water) combines to form a single new compound without forming any other products. So a saturated product or one in which is an increase in degree of saturation is formed.
Answer : The partial pressure of
and
is, 216.5 mmHg and 649.5 mmHg
Explanation :
According to the Dalton's Law, the partial pressure exerted by component 'i' in a gas mixture is equal to the product of the mole fraction of the component and the total pressure.
Formula used :


So,

where,
= partial pressure of gas
= mole fraction of gas
= total pressure of gas
= moles of gas
= total moles of gas
The balanced decomposition of ammonia reaction will be:

Now we have to determine the partial pressure of
and 

Given:


and,

Given:


Thus, the partial pressure of
and
is, 216.5 mmHg and 649.5 mmHg
<u> Increasing pH will increase the solubility of the Hg2(CN)2 by shifting </u><u>equilibrium </u><u>to right side.</u>
What is the meaning of OH in chemistry?
The chemical group, ion, or radical OH that consists of one atom of hydrogen and one of oxygen and is neutral or negatively charged.
Hg2(CN)2 + 2OH- ----> 2HgO(s) + 2HCN
adding OH- to the mercury(l) cyanide will cause the formation of the solid HgO.
therefore increasing pH will increase the solubility of the Hg2(CN)2 by shifting equilibrium to right side.
Learn more about OH
brainly.com/question/2911201
#SPJ4
V1M1 = V2M2
<span>V1 × 2.5 = 1 × 0.75,
so V1 = 0.75/2.5
= 0.3 </span>
Answer:
The correct options are;
C. The magnitude of attraction from its nucleus
D. The distance between the electrons and its nucleus
Explanation:
The atomic radius reduces, within a given period, as we move from left to right, the number of protons increases alongside the number of electrons and the while the quantum shell to which the extra electrons are added to is the same. Therefore, the radius of the atom is dependent on the magnitude of the attraction from the nucleus
Similarly, as we progress to the next period, with an extra quantum shell, the atomic radius is seen to increase.
Therefore, the atomic radius is determined by the distance between the electrons and its nucleus.