Answer:
C2H5O
Explanation:
In a 100 g sample we would have
53.31 g of C
11.18g of H
35.51g of O
First, we find the relative number of atoms of each element by dividing the number of grams the element has in the compound by its atomic mass.
Atomic mass of carbon is 12.011
Relative number of carbon atoms = 53.31 / 12.011 = 4.4
Atomic mass of hydrogen = 1.007
Relative number of hydrogen atoms : 11.18/1.007 = 11.1
Atomic mass of oxygen : 15.999
Relative number of oxygen atoms : 35.51 / 15.999 = 2.2
Now we find a ratio of the relative number of atoms by dividing the # of relative atoms of each element by the element's relative number of atoms that had the lowest number. ( oxygen which had 2.2 ) The outcome of each will be the subscript or number of atoms of each element.
Carbon : 4.4 / 2.2 = 2
Hydrogen : 11.1 / 2.2 = 5
Oxygen : 2.2 / 2.2 = 1
The answer is C2H5O
Answer is: <span>the percent ionization is 0,19%.
</span>Chemical reaction: HA(aq) ⇄ H⁺(aq) + A⁻(aq).
Ka(HA) = 3,6·10⁻⁷.
c(HA) = 0,1 M.
[H⁺] = [A⁻] = x; equilibrium concentration.
[HA] = 0,1 M - x.
Ka = [H⁺] · [A⁻] / [HA].
0,00000036 = x² / 0,1 M - x.
Solve quadratic equation: x = 0,00019 M.
α = 0,00019 M ÷ 0,1 M · 100% = 0,19%.
Answer:
It should be acetic acid.
Explanation:
When you have ionic bonds, the ionic bonds will always be water soluble; the polarity doesn't matter for this case.
Answer:
Answer: a) 20g of H2O (18.02 g/mol) molecules=6.68x10^23
Explanation:
In order to find the amount of molecules of each of the options, we need to follow the following equation.

So, let´s get the number of molecules for each of the options.





the smalest number is in option a)
Best of luck.