A beachside all objects have thermal energy but thermal energy is the sum of the energy of all the particles so the more particles the more energy.
Answer:
The electrons are supplied by the species getting oxidized. They move from anode to the cathode in the external circuit. The external battery supplies the electrons. They enter through the cathode and come out through the anode
There are different formula you need to keep in mind when solving for [OH-]
Given that pH = 6.10
pH + pOH = 14
6.10 + pOH = 14
pOH = 7.9
[OH-] = 10^(-pOH)
[OH-] = 10^(-7.9)
[OH-] = 0.000000013
[OH-] = 1.3 x 10^-8
<h2>
<u>Answer: [OH-] = 1.3 x 10^-8</u></h2>
The answer to the question
Explanation:
Since HF is a weak acid, the use of an ICE table is required to find the pH. The question gives us the concentration of the HF.
HF+H2O⇌H3O++F−HF+H2O⇌H3O++F−
Initial0.3 M-0 M0 MChange- X-+ X+XEquilibrium0.3 - X-X MX M
Writing the information from the ICE Table in Equation form yields
6.6×10−4=x20.3−x6.6×10−4=x20.3−x
Manipulating the equation to get everything on one side yields
0=x2+6.6×10−4x−1.98×10−40=x2+6.6×10−4x−1.98×10−4
Now this information is plugged into the quadratic formula to give
x=−6.6×10−4±(6.6×10−4)2−4(1)(−1.98×10−4)−−−−−−−−−−−−−−−−−−−−−−−−−−−−√2x=−6.6×10−4±(6.6×10−4)2−4(1)(−1.98×10−4)2
The quadratic formula yields that x=0.013745 and x=-0.014405
However we can rule out x=-0.014405 because there cannot be negative concentrations. Therefore to get the pH we plug the concentration of H3O+ into the equation pH=-log(0.013745) and get pH=1.86