Answer:
a solution of acetic acid and sodium acetate
Explanation:
A buffer solution is defined as a solution which resist a change in pH when small quantity of a strong acid or a strong base are added. A buffer solution is made up of mixture of a weak acid and its conjugate base or a mixture of a weak base and its conjugate acid.
Acetic acid is the only option because it is a weak acid with a corresponding conjugate base, acetate. Unlike a solution of sulfuric acid and sodium sulfate in which the sulfuric acid is a strong acid which doesn’t qualify it to be a buffer solution. The remaining options have different acid compounds paired together which makes them invalid too.
CaCO₃ partially dissociates in water as Ca²⁺ and CO₃²⁻. The balanced equation is,
CaCO₃(s) ⇄ Ca²⁺(aq) + CO₃²⁻(aq)
Initial Y - -
Change -X +X +X
Equilibrium Y-X X X
Ksp for the CaCO₃(s) is 3.36 x 10⁻⁹ M²
Ksp = [Ca²⁺(aq)][CO₃²⁻(aq)]
3.36 x 10⁻⁹ M² = X * X
3.36 x 10⁻⁹ M² = X²
X = 5.79 x 10⁻⁵ M
Hence the solubility of CaCO₃(s) = 5.79 x 10⁻⁵ M
= 5.79 x 10⁻⁵ mol/L
Molar mass of CaCO₃ = 100 g mol⁻¹
Hence the solubility of CaCO₃ = 5.79 x 10⁻⁵ mol/L x 100 g mol⁻¹
= 5.79 x 10⁻³ g/L
<span>Some mass is converted into energy in a nuclear reaction. Hope this helps!
</span>