Answer:
The maximum length is 3.897×10^-5 mm
Explanation:
Extension = surface energy/elastic modulus
surface energy = 1.05 J/m^2
elastic modulus = 198 GPa = 198×10^9 Pa
Extension = 1.05/198×10^9 = 5.3×10^-12 m
Strain = stress/elastic modulus = 27×10^6/198×10^9 = 1.36×10^-4
Length = extension/strain = 5.3×10^-12/1.36×10^-4 = 3.897×10^-8 m = 3.897×10^-8 × 1000 = 3.897×10^-5 mm
Answer:
The resultant moment is 477.84 N·m
Explanation:
We note that the resultant moment is given by the moment about a given point
The length of the sides of the formed triangles are;
l = sin(40°) × 4/sin(110°) ≈ 2.736
Taking the moment about the lower left hand corner of the figure, with the convention that clockwise moments are positive, we have;
The resultant moment, ∑m, is given as follow;
∑M = 250 N × 4 m + 400 N × cos(40°) × 4 m - 400 N × cos(40°) × 2 m + 400 N × sin(40°) × 2 m × tan(40°) - 600 N × cos(40°) × 2 m - 600 N× sin(40°) × 2 m × tan(40°) = 477.837084 N·m
Therefore, the resultant moment, ∑m ≈ 477.84 N·m clockwise.
Answer:
Chemical engineering is the branch of engineering that deals with chemical production and the manufacture of products through chemical processes
Explanation: