1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nirvana33 [79]
3 years ago
14

Stream Piracy – Kaaterskill, NY. Check and double-click the Problem 15 folder. The dark blue and orange streams highlight the pr

ocess of stream piracy/stream capture (i.e., they are pirating/capturing the headwaters of the cyan and magenta streams, respectively). Which of the following helps promote this?
a. The pirating streams are larger and can hold more water than the other streams.
b. The pirating streams are eroding headwardly to intersect more of the other streams’ drainage basins, causing water to be diverted down their steeper gradients.
c. The land to the west is being uplifted.
d. Landslides have diverted the water into the stream pirates.
Engineering
1 answer:
baherus [9]3 years ago
5 0

Answer:

b. The pirating streams are eroding headwardly to intersect more of the other streams’ drainage basins, causing water to be diverted down their steeper gradients.

Explanation:

From the Kaaterskill NY 15 minute map (1906), this shows two classic examples of stream capture.

The Kaaterskill Creek flow down the east relatively steep slopes into the Hudson River Valley. While, the Gooseberry Creek is a low gradient stream flowing down the west direction which in turn drains the higher parts of the Catskills in this area.

However, there is Headward erosion of Kaaterskill Creek which resulted to the capture of part of the headwaters of Gooseberry Creek.

The evidence for this is the presence of "barbed" (enters at obtuse rather than acute angle) tributary which enters Kaaterskill Creek from South Lake which was once a part of the Gooseberry Creek drainage system.

It should be noted again, that there is drainage divide between the Gooseberry and Kaaterskill drainage systems (just to the left of the word Twilight) which is located in the center of the valley.

As it progresses, this divide will then move westward as Kaaterskill captures more and more of the Gooseberry system.

You might be interested in
Explain about Absolute viscosity, kinematic viscosity and SUS?
ArbitrLikvidat [17]

Answer:

Absolute viscosity is the evaluation of the resistance (INTERNAL) of the fluid  flow

Kinematic viscosity relates to the dynamic viscosity and density proportion.

SUS stands for Sabolt Universal Seconds. it is units which described the variation of oil viscosity

Explanation:

Absolute viscosity is the evaluation of the resistance (INTERNAL) of the fluid  flow, whereas Kinematic viscosity relates to the dynamic viscosity and density proportion. fluid with distinct kinematic viscosities may have similar dynamic viscosities and vice versa.Dynamic viscosity provides you details of  power required to make the fluid flow at some rate, however kinematic viscosity shows how quick the fluid moves when applying a certain force.

SUS stands for Sabolt Universal Seconds. it is units which described the variation of oil viscosity when change with change in temperature. it is measured by using viscosimeter.

3 0
3 years ago
Amanda and Tyler opened a business that specializes in shipping liquids, such as milk, juice, and water, in cylindrical containe
USPshnik [31]

Answer:

circleType.h

#ifndef circleType_H

#define circleType_H

class circleType

{

public:

void print();

void setRadius(double r);

//Function to set the radius.

//Postcondition: if (r >= 0) radius = r;

// otherwise radius = 0;

double getRadius();

//Function to return the radius.

//Postcondition: The value of radius is returned.

double area();

//Function to return the area of a circle.

//Postcondition: Area is calculated and returned.

double circumference();

//Function to return the circumference of a circle.

//Postcondition: Circumference is calculated and returned.

circleType(double r = 0);

//Constructor with a default parameter.

//Radius is set according to the parameter.

//The default value of the radius is 0.0;

//Postcondition: radius = r;

private:

double radius;

};

#endif

circleTypeImpl.cpp

#include <iostream>

#include "circleType.h"

using namespace std;

void circleType::print()

{

cout << "Radius = " << radius

<< ", area = " << area()

<< ", circumference = " << circumference();

}

void circleType::setRadius(double r)

{

if (r >= 0)

radius = r;

else

radius = 0;

}

double circleType::getRadius()

{

return radius;

}

double circleType::area()

{

return 3.1416 * radius * radius;

}

double circleType::circumference()

{

return 2 * 3.1416 * radius;

}

circleType::circleType(double r)

{

setRadius(r);

}

cylinderType.h

#ifndef cylinderType_H

#define cylinderType_H

#include "circleType.h"

class cylinderType: public circleType

{

public:

void print();

void setHeight(double);

double getHeight();

double volume();

double area();

//returns surface area

cylinderType(double = 0, double = 0);

private:

double height;

};

#endif

cylinderTypeImpl.cpp

#include <iostream>

#include "circleType.h"

#include "cylinderType.h"

using namespace std;

cylinderType::cylinderType(double r, double h)

: circleType(r)

{

setHeight(h);

}

void cylinderType::print()

{

cout << "Radius = " << getRadius()

<< ", height = " << height

<< ", surface area = " << area()

<< ", volume = " << volume();

}

void cylinderType::setHeight(double h)

{

if (h >= 0)

height = h;

else

height = 0;

}

double cylinderType::getHeight()

{

return height;

}

double cylinderType::area()

{

return 2 * 3.1416 * getRadius() * (getRadius() + height);

}

double cylinderType::volume()

{

return 3.1416 * getRadius() * getRadius() * height;

}

main.cpp

#include <iostream>

#include <iomanip>

using namespace std;

#include "cylinderType.h"

int main()

{

double radius,height;

double shippingCostPerLi,paintCost,shippingCost=0.0;

 

cout << fixed << showpoint;

cout << setprecision(2);

cout<<"Enter the radius :";

cin>>radius;

 

cout<<"Enter the Height of the cylinder :";

cin>>height;

 

 

cout<<"Enter the shipping cost per liter :$";

cin>>shippingCostPerLi;

 

 

//Creating an instance of CylinderType by passing the radius and height as arguments

cylinderType ct(radius,height);

 

double surfaceArea=ct.area();

double vol=ct.volume();

 

 

shippingCost+=vol*28.32*shippingCostPerLi;

 

char ch;

 

cout<<"Do you want the paint the container (y/n)?";

cin>>ch;

if(ch=='y' || ch=='Y')

{

cout<<"Enter the paint cost per sq foot :$";

cin>>paintCost;    

shippingCost+=surfaceArea*paintCost;    

}    

cout<<"Total Shipping Cost :$"<<shippingCost<<endl;

 

return 0;

}

3 0
3 years ago
Exercises
Feliz [49]

Answer:

Rocket

Gas

Explanation:

5 0
3 years ago
Are all transmissions fluids interchangeable
KiRa [710]

Answer:

<u>No</u>.

Explanation:

They are not all the same. Moreover, using a fluid that is not approved by the vehicle manufacturer will void the transmission warranty.

6 0
3 years ago
Air flows through a 0.25-m-diameter duct. At the inlet the velocity is 300 m/s, and the stagnation temperature is 90°C. If the M
Naddika [18.5K]

Answer:

a. 318.2k

b. 45.2kj

Explanation:

Heat transfer rate to an object is equal to the thermal conductivity of the material the object is made from, multiplied by the surface area in contact, multiplied by the difference in temperature between the two objects, divided by the thickness of the material.

See attachment for detailed analysis

7 0
4 years ago
Other questions:
  • A slight breeze is blowing over the hot tub above and yields a heat transfer coefficient h of 20 W/m2 -K. The air temperature is
    15·1 answer
  • A hydrogen-filled balloon to be used in high altitude atmosphere studies will eventually be 100 ft in diameter. At 150,000 ft, t
    7·1 answer
  • An electronic device dissipating 25 W has a mass of 20 g and a specific heat of 850 J/kg·0K. The device is lightly used, and it
    9·1 answer
  • A wastewater treatment plant has two primary clarifiers, each 20m in diameter with a 2-m side-water depth. the effluent weirs ar
    8·1 answer
  • write an interface downloadable that has a method "geturl" that returns the url of a downloadable object
    5·1 answer
  • Describe the algorithm you use for looking up a person’s telephone number in the phone book. The input is person’s name; the out
    9·2 answers
  • 30POINTS
    15·2 answers
  • 8- Concentration polarization occurs on the surface of the.......
    15·1 answer
  • How to plot 0.45 gradation chart for sieve analysis ?
    12·1 answer
  • How to clean a snowblower carburetor without removing it.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!