-6+1= -5
-5 is the true answer
Answer: The expression for equilibrium constant is ![\frac{[NH_3]^2}{[H_2]^3[N_2]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BH_2%5D%5E3%5BN_2%5D%7D)
Explanation: Equilibrium constant is the expression which relates the concentration of products and reactants preset at equilibrium at constant temperature. It is represented as 
For a general reaction:

The equilibrium constant is written as:
![k_c=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=k_c%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
Chemical reaction for the formation of ammonia is:


Expression for
is:
![k_c=\frac{[NH_3]^2}{[H_2]^3[N_2]}](https://tex.z-dn.net/?f=k_c%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BH_2%5D%5E3%5BN_2%5D%7D)
![1.6\times 10^2=\frac{[NH_3]^2}{[H_2]^3[N_2]}](https://tex.z-dn.net/?f=1.6%5Ctimes%2010%5E2%3D%5Cfrac%7B%5BNH_3%5D%5E2%7D%7B%5BH_2%5D%5E3%5BN_2%5D%7D)
Answer:
Option B. Decreasing the temperature of the solvent
Explanation:
Solubility is mostly enhanced by increasing the temperature of the solvent or solution. This means that am increase in temperature will increase the solubility and decreasing the temperature will decrease the solubility.
The concentration of the HCl solution is 0.72 M.
<h3>How do we calculate the concentration?</h3>
Concentration of the required solution by the use of the known concentration solution will be determine by using the below equation as:
M₁V₁ = M₂V₂, where
- M₁ & V₁ are the molarity and volume of the HCl solution.
- M₂ & V₂ are the molarity and volume of the NaOH solution.
On putting values in the above equation, we get
M₁ = (1)(0.018) / (0.025) = 0.72 M
Hence required concentration of HCl is 0.72M.
To know kore about molarity, visit the below link:
brainly.com/question/24305514
#SPJ1
Answer:
Aqueous layer (1 M HCI)
Explanation:
First of us I want to remind you of the cliché in chemistry that like dissolves like. In solvent extraction, a mixture is dissolved in a system consisting of two immiscible solvents. One layer is organic while the other layer is aqueous.
Polar substances partition in the aqueous layer while nonpolar substances partition in the organic layer.
Since Copper sulfate is ionic, we will find it in the aqueous layer according to the old chemistry cliche.