Answer:
Resistivity 
It depends upon cross sectional area and length of material
Explanation:
The resistance of any material is given by
, here
is the resistivity of material , l is length of material and A is cross sectional area
So resistivity 
So resistuivity of any material depends upon area of cross section and length of material
If cross sectional area will be more then resistivity will be more. And is length of the material will be more then resistivity will be less
Answer:
If there is no damping, the amount of transmitted vibration that the microscope experienced is = 
Explanation:
The motion of the ceiling is y = Y sinωt
y = 0.05 sin (2 π × 2) t
y = 0.05 sin 4 π t
K = 25 lb/ft × 4 sorings
K = 100 lb/ft
Amplitude of the microscope ![\frac{X}{Y}= [\frac{1+2 \epsilon (\omega/ W_n)^2}{(1-(\frac{\omega}{W_n})^2)^2+(2 \epsilon \frac{\omega}{W_n})^2}]](https://tex.z-dn.net/?f=%5Cfrac%7BX%7D%7BY%7D%3D%20%5B%5Cfrac%7B1%2B2%20%5Cepsilon%20%28%5Comega%2F%20W_n%29%5E2%7D%7B%281-%28%5Cfrac%7B%5Comega%7D%7BW_n%7D%29%5E2%29%5E2%2B%282%20%5Cepsilon%20%20%5Cfrac%7B%5Comega%7D%7BW_n%7D%29%5E2%7D%5D)
where;


= 
= 4.0124
replacing them into the above equation and making X the subject of the formula:



Therefore; If there is no damping, the amount of transmitted vibration that the microscope experienced is = 
Equilibrium force is the force that will keep the small
mass in place, hence no movement must be made. So we know that 32 N of force is
acted towards the positive direction so +32 N. Which is counteracted by 26 N
force so:
32 N – 26 N = 6 N (positive)
Since positive 6 is left, therefore this must be acted by
an equilibrant negative 6 N.
Answer:
<span>- 6 N </span>
Answer:
Most of the EM waves from the sun that reach Earth are infrared waves, visible light, and UV radiation.
Explanation:
I hope this helps! Have a good day!