Answer:
Explanation:
Consider another special case in which the inclined plane is vertical (θ=π/2). In this case, for what value of m1 would the acceleration of the two blocks be equal to zero
F - Force
T = Tension
m = mass
a = acceleration
g = gravitational force
Let the given Normal on block 2 = N
and 
and the tension in the given string is said to be 
When the acceleration 
for the said block 1.
It will definite be zero only when Force is zero , F=0.
Here by Force, F
I refer net force on block 1.
Now we know

It is known that if the said
,
then Tension
,
Now making 
So If we are to make Force equal to zero

First we need to find the speed of the dolphin sound wave in the water. We can use the following relationship between frequency and wavelength of a wave:

where
v is the wave speed

its wavelength
f its frequency
Using

and

, we get

We know that the dolphin sound wave takes t=0.42 s to travel to the tuna and back to the dolphin. If we call L the distance between the tuna and the dolphin, the sound wave covers a distance of S=2 L in a time t=0.42 s, so we can write the basic relationship between space, time and velocity for a uniform motion as:

and since we know both v and t, we can find the distance L between the dolphin and the tuna:
Answer:
A. nuclear fusion reactions
C. it's still hot from the big bang
Explanation:
The inside of the earth is hot due to some reasons. This heat provides the internal energy the drives processes within the earth interior. Here are some of the ways in which the heat has accumulated:
- Nuclear reactions within the earth interior by fusion and other radioactive processes releases a large amount of heat.
- Some heat accreted during the early formation of the earth and has not been lost till this day.
- Heating due to friction
These are some of the sources of the earth's internal heat.
Answer:
The horizontal component of the velocity is 188 m/s
The vertical component of the velocity is 50 m/s.
Explanation:
Hi there!
Please, see the figure for a graphic description of the problem. Notice that the x-component of the vector velocity (vx), the y-component (vy) and the vector velocity form a right triangle. Then, we can use trigonometry to obtain the magnitude of vx and vy:
We can find vx using the following trigonometric rule of a right triangle:
cos α = adjacent / hypotenuse
cos 15° = vx / 195 m/s
195 m/s · cos 15° = vx
vx = 188 m/s
The horizontal component of the velocity is 188 m/s
To calculate the y-component we will use the following trigonometric rule:
sin α = opposite / hypotenuse
sin 15° = vy / 195 m/s
195 m/s · sin 15° = vy
vy = 50 m/s
The vertical component of the velocity is 50 m/s.
The capacitance is defined as the maximum charge stored in a capacitor, Q, divided by the voltage applied, V:

The capacitor is initially charged with the battery of 108 V, so the the initial charge on the capacitor can be found by re-arranging the previous formula: