Answer:
The observed frequency by the pedestrian is 424 Hz.
Explanation:
Given;
frequency of the source, Fs = 400 Hz
speed of the car as it approaches the stationary observer, Vs = 20 m/s
Based on Doppler effect, as the car the approaches the stationary observer, the observed frequency will be higher than the transmitted (source) frequency because of decrease in distance between the car and the observer.
The observed frequency is calculated as;
![F_s = F_o [\frac{v}{v_s + v} ] \\\\](https://tex.z-dn.net/?f=F_s%20%3D%20F_o%20%5B%5Cfrac%7Bv%7D%7Bv_s%20%2B%20v%7D%20%5D%20%5C%5C%5C%5C)
where;
F₀ is the observed frequency
v is the speed of sound in air = 340 m/s
![F_s = F_o [\frac{v}{v_s + v} ] \\\\400 = F_o [\frac{340}{20 + 340} ] \\\\400 = F_o (0.9444) \\\\F_o = \frac{400}{0.9444} \\\\F_o = 423.55 \ Hz \\](https://tex.z-dn.net/?f=F_s%20%3D%20F_o%20%5B%5Cfrac%7Bv%7D%7Bv_s%20%2B%20v%7D%20%5D%20%5C%5C%5C%5C400%20%3D%20F_o%20%5B%5Cfrac%7B340%7D%7B20%20%2B%20340%7D%20%5D%20%5C%5C%5C%5C400%20%3D%20F_o%20%280.9444%29%20%5C%5C%5C%5CF_o%20%3D%20%5Cfrac%7B400%7D%7B0.9444%7D%20%5C%5C%5C%5CF_o%20%3D%20423.55%20%5C%20Hz%20%5C%5C)
F₀ ≅ 424 Hz.
Therefore, the observed frequency by the pedestrian is 424 Hz.
Answer: 4.
Explanation:
Use formula v = d / t, where v = speed, d = distance and t = time.
v = 10 / 2.5
v = 4.
Here is the answer. The part of a thunderstorm that kills the <span> most people each year is the LIGHTNING. Thunder is only the sound created and will not hurt anyone, but it is the lightning that can kill anyone who will be struck by it. Hope this answers your question. Have a great day!</span>
Go and click to the invitation bar and you can find an option written as " search friends " . Then it's easy to find that unknown user if you're pretty fond with his/her username and DP ( display picture ).