Answer: a) 3.85 days
b) 10.54 days
Explanation:-
Expression for rate law for first order kinetics is given by:

where,
k = rate constant = ?
t = time taken for decomposition = 3 days
a = let initial amount of the reactant = 100 g
a - x = amount left after decay process = 
First we have to calculate the rate constant, we use the formula :
Now put all the given values in above equation, we get


a) Half-life of radon-222:


Thus half-life of radon-222 is 3.85 days.
b) Time taken for the sample to decay to 15% of its original amount:
where,
k = rate constant = 
t = time taken for decomposition = ?
a = let initial amount of the reactant = 100 g
a - x = amount left after decay process = 


Thus it will take 10.54 days for the sample to decay to 15% of its original amount.
Answer:
wavelenght
Explanation:
The wavelength is the spatial period of a wave, analogous to the temporal period, it is the distance between two consecutive points with maximum amplitude that are repeated in space . In the waves of the sea, the wavelength is easily observed in the separation between two consecutive ridges.
Answer:
16.63min
Explanation:
The question is about the period of the comet in its orbit.
To find the period you can use one of the Kepler's law:

T: period
G: Cavendish constant = 6.67*10^-11 Nm^2 kg^2
r: average distance = 1UA = 1.5*10^11m
M: mass of the sun = 1.99*10^30 kg
By replacing you obtain:

the comet takes around 16.63min
Answer:
Explanation:
distance of fan A = 18.3 m
distance of fan B = 127 m
speed of sound (s) = 343 m/s
What is the time difference between hearing the sound at the two locations?
time (T) = distance / speed
- time for sound to reach fan A = 18.3 / 343 = 0.053 s
- time it takes for sound to reach fan B = 127 / 343 = 0.370 s
- time difference = 0.370 - 0.053 = 0.317 s
Answer:
3 seconds
Explanation:
Applying,
Applying,
v = u±gt................ Equation 1
Where v = final velocity, u = initial velocity, t = time, g = acceleration due to gravity.
From the question,
Given: v = 0 m/s ( at the maximum height), u = 30 m/s
Constant: g = -10 m/s
Substitute these values into equation 1
0 = 30-10t
10t = 30
t = 30/10
t = 3 seconds