In a longitudinal wave, the motion of the medium is parrellel to the direction of the wave.
Answer:
reviewing the opinion of the two students we see that neither is right, since when the kinetic energy increases the potential energy decreases by the same value
Explanation:
For this exercise we must use the law of conservation of energy.
Starting point. Resting electron
Em₀ = U = eV
the potential difference and the electric field are related
V = - E d
Final point. When leaving the electric field
= K = ½ m v²
Em₀ = Em_{f}
e E d = ½ m v²
From this expression we see that when an electron moves from the initial point to the final point, the potential energy must decrease, for the total energy to be constant.
When reviewing the opinion of the two students we see that neither is right, since when the kinetic energy increases the potential energy decreases by the same value
Answer:
No, the magnitude of the magnetic field won't change.
Explanation:
The magnetic field produced by a wire with a constant current is circular and its flow is given by the right-hand rule. Since this field is circular with center on the wire the magnitude of the magnetic field around the wire will be given by B = [(\mi_0)*I]/(2\pi*r) where (\mi_0) is a constant, I is the current that goes through the conductor and r is the distance from the wire. If the field sensor will move around the wire with a fixed radius the distance from the wire won't change so the magnitude of the field won't change.
Answer:
they both use 1 and 0
Explanation:
Flipping a switch shows I for light on and 0 for light off
Missing figure: find it in attachment.
Answer:
Force D
Explanation:
In order to answer the question, let's keep in mind that the force of gravity on an object on Earth is the attractive force exerted by the Earth on the object; its direction is always downward (towards the Earth's centre), and its magnitude is given by
F = mg
where m is the mass of the object and g is the acceleration of gravity.
It follows immediately that in the figure, the force of gravity is the only force acting downward: therefore, force D.
The other forces are called:
Force A: thrust (it is the forward force generated by the engines)
Force B: lift (it is the upward produced by the aerodynamics of the wings)
Force C: air resistance (it is the backward force due to the friction between the air and the surface of the plane)