Answer:
i = 0.3326 L
Explanation:
A fixed string at both ends presents a phenomenon of standing waves, two waves with the same frequency that are added together. The expression to describe these waves is
2 L = n λ n = 1, 2, 3…
The first harmonic or leather for n = 1
Wave speed is related to wavelength and frequency
v = λ f
λ = v / f
Let's replace in the first equation
2 L = 1 (v / f₁)
For the shortest length L = L-l
2 (L- l) = 1 (v / f₂)
These two equations form our equation system, let's eliminate v
v = 2L f₁
v = 2 (L-l) f₂
2L f₁ = 2 (L-l) f₂
L- l = L f₁ / f₂
l = L - L f₁ / f₂
l = L (1- f₁ / f₂)
.
Let's calculate
l / L = (1- 309/463)
i / L = 0.3326
F = ma so u can plug in the given numbers and solve:
F = (2)(3)
Answer: (a) The magnitude of its temperature change in degrees Celsius is
.
(b) The magnitude of the temperature change (change in T = 15.1 K) in degrees Fahrenheit is
.
Explanation:
(a) Expression for change in temperature is as follows.

= 15.1 K
= 
= 
= 
Therefore, the magnitude of its temperature change in degrees Celsius is
.
(b) Change in temperature from Celsius to Fahrenheit is as follows.
F = 1.8C + 32
C = 
Since, K = C + 273
or, 

= 1.8 (15.1)
= 
or, = 
Thus, we can conclude that the magnitude of the temperature change (change in T = 15.1 K) in degrees Fahrenheit is
.
My guess is; The warmer ocean adds water vapor to the air mass.
I'm really sorry if I'm wrong
Hi there!
We know that:
Force due to gravity = Mgsinθ
Force due to friction = μMgcosθ
Let the positive direction be directed in the direction of the block's acceleration, which is downward.
Thus:
ΣF = Mgsinθ - μMgcosθ
Solving for acceleration requires diving all terms by the mass, so:
a = gsinθ - μgcosθ
Substitute in given values. (g = 9.8 m/s²)
a = 9.8sin(30) - 0.3(9.8)cos(30) = 2.354 m/s²