1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jasenka [17]
2 years ago
8

Discuss one social problem in the world today. What do you think should be done to help solve this social problem?

Physics
1 answer:
Lemur [1.5K]2 years ago
5 0

The most common Social Problems are using of drugs, child abuse, crime, corruption and many more problems.

<h3>Discuss Social Problem in the world today. What do you think should be done to help solve this social problem?</h3>

There are many social problems in the world today, but the biggest social problems which very common in our today's society is; unemployment, migration, crime, delinquency, drug abuse, child abuse, crime against women, crime against children, discrimination on the basis of Caste, class & religion , corruption, family and health problems, education, political, economic, cultural and environment issues. The most common social problem which is related with the health is smoking, drinking alcohols, heroin, snuph, theft and many more problems.

We can fix all the above problems by making rules and regulations which should be implement on the peoples.

So we can conclude that: The most common Social Problems are using of drugs, child abuse, crime, corruption and many more problems.

Learn more about Social Problems here: brainly.com/question/600372

#SPJ1

You might be interested in
A 500kg car is driven forward with a thrust force of 1500N. Air resistance and friction acts against the motion of the car with
Wittaler [7]
2m/s^2, this is because F=ma, meaning a is also equal to F/m. The car applies 1500N in one direction and outside sources apply a total of -500N, meaning the 500kg car is moving forward with a total of 1000N of force. Taking the total 1000N and dividing it by 500kg gives you and acceleration of 2m/s^2. Hope this helps!
8 0
2 years ago
An electron moving to the left at 0.8c collides with a photon moving to the right. After the collision, the electron is moving t
SVETLANKA909090 [29]

Answer:

Wavelength = 2.91 x 10⁻¹² m, Energy = 6.8 x 10⁻¹⁴

Explanation:

In order to show that a free electron can’t completely absorb a photon, the equation for relativistic energy and momentum will be needed, along the equation for the energy and momentum of a photon. The conservation of energy and momentum will also be used.

E = y(u) mc²

Here c is the speed of light in vacuum and y(u) is the Lorentz factor

y(u) = 1/√[1-(u/c)²], where u is the velocity of the particle

The relativistic momentum p of an object of mass m and velocity u is given by

p = y(u)mu

Here y(u) being the Lorentz factor

The energy E of a photon of wavelength λ is

E = hc/λ, where h is the Planck’s constant 6.6 x 10⁻³⁴ J.s and c being the speed of light in vacuum 3 x 108m/s

The momentum p of a photon of wavelenght λ is,

P = h/λ

If the electron is moving, it will start the interaction with some momentum and energy already. Momentum of the electron and photon in the initial and final state is

p(pi) + p(ei) = p(pf) + p(ef), equation 1, where p refers to momentum and the e and p in the brackets refer to proton and electron respectively

The momentum of the photon in the initial state is,

p(pi) = h/λ(i)

The momentum of the electron in the initial state is,

p(ei) = y(i)mu(i)

The momentum of the electron in the final state is

p(ef) = y(f)mu(f)

Since the electron starts off going in the negative direction, that momentum will be negative, along with the photon’s momentum after the collision

Rearranging the equation 1 , we get

p(pi) – p(ei) = -p(pf) +p(ef)

Substitute h/λ(i) for p(pi) , h/λ(f) for p(pf) , y(i)mu(i) for p(ei), y(f)mu(f) for p(ef) in the equation 1 and solve

h/λ(i) – y(i)mu(i) = -h/λ(f) – y(f)mu(f), equation 2

Next write out the energy conservation equation and expand it

E(pi) + E(ei) = E(pf) + E(ei)

Kinetic energy of the electron and photon in the initial state is

E(p) + E(ei) = E(ef), equation 3

The energy of the electron in the initial state is

E(pi) = hc/λ(i)

The energy of the electron in the final state is

E(pf) = hc/λ(f)

Energy of the photon in the initial state is

E(ei) = y(i)mc2, where y(i) is the frequency of the photon int the initial state

Energy of the electron in the final state is

E(ef) = y(f)mc2

Substitute hc/λ(i) for E(pi), hc/λ(f) for E(pf), y(i)mc² for E(ei) and y(f)mc² for E(ef) in equation 3

Hc/λ(i) + y(i)mc² = hc/λ(f) + y(f)mc², equation 4

Solve the equation for h/λ(f)

h/λ(i) + y(i)mc = h/λ(f) + y(f)mc

h/λ(f) = h/lmda(i) + (y(i) – y(f)c)m

Substitute h/λ(i) + (y(i) – y(f)c)m for h/λ(f)  in equation 2 and solve

h/λ(i) -y(i)mu(i) = -h/λ(f) + y(f)mu(f)

h/λ(i) -y(i)mu(i) = -h/λ(i) + (y(f) – y(i))mc + y(f)mu(f)

Rearrange to get all λ(i) terms on one side, we get

2h/λ(i) = m[y(i)u(i) +y(f)u(f) + (y(f) – y(i)c)]

λ(i) = 2h/[m{y(i)u(i) + y(f)u(f) + (y(f) – y(i))c}]

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

Calculate the Lorentz factor using u(i) = 0.8c for y(i) and u(i) = 0.6c for y(f)

y(i) = 1/[√[1 – (0.8c/c)²] = 5/3

y(f) = 1/√[1 – (0.6c/c)²] = 1.25

Substitute 6.63 x 10⁻³⁴ J.s for h, 0.511eV/c2 = 9.11 x 10⁻³¹ kg for m, 5/3 for y(i), 0.8c for u(i), 1.25 for y(f), 0.6c for u(f), and 3 x 10⁸ m/s for c in the equation derived for λ(i)

λ(i) = 2h/[m.c{y(i)(u(i)/c) + y(f)(u(f)/c) + (y(f) – y(i))}]

λ(i) = 2(6.63 x 10-34)/[(9.11 x 10-31)(3 x 108){(5/3)(0.8) + (1.25)(0.6) + ((1.25) – (5/3))}]

λ(i) = 2.91 x 10⁻¹² m

So, the initial wavelength of the photon was 2.91 x 10-12 m

Energy of the incoming photon is

E(pi) = hc/λ(i)

E(pi) = (6.63 x 10⁻³⁴)(3 x 10⁸)/(2.911 x 10⁻¹²) = 6.833 x 10⁻¹⁴ = 6.8 x 10⁻¹⁴

So the energy of the photon is 6.8 x 10⁻¹⁴ J

6 0
3 years ago
In a thermostat, what property of the bimetallic coil allows it to contract and expand? The two metals absorb different amounts
Reika [66]
Hello!

In a thermostat, the property of the bimetallic coil that allows it to contract and expand is that The two metals absorb different amounts of thermal energy. 

This bimetallic coil is used to transform thermal energy into mechanical movement. Two metals with different thermal expansivity are joined together parallelly and the changes of temperature cause bending in different directions depending on if the temperature is rising or descending. 

The differences in the thermal energy absorption of the two metals are the basis for the mechanism of this device. 
3 0
3 years ago
Read 2 more answers
A top-fuel dragster accelerates from rest to a velocity of 100 m/s in 8 s. What is the acceleration?
seropon [69]

Answer:

100 m/s ÷ 8 = 12.5 m/s

Explanation:

You must put multiply (÷)

4 0
3 years ago
The direction of the acceleration of an object on a(n) _______________________ path is toward the _______________________ of the
aleksandrvk [35]

Answer:

circular...center

Explanation:

Physics

8 0
3 years ago
Other questions:
  • A glass ball of radius 3.74 cm sits at the bottom of a container of milk that has a density of 1.04 g/cm3. The normal force on t
    10·1 answer
  • Every winter I fly home to Michigan. It takes 5.2 hours. What is my average speed
    14·1 answer
  • Small-plane pilots regularly compete in "message drop" competitions, dropping heavy weights (for which air resistance can be ign
    5·1 answer
  • An Object moving 10 m/s undergoes acceleration for 6 seconds. If it moves 8 m to the left, find the acceleration
    12·1 answer
  • A speed skater moving to the left across frictionless ice at 8.0 m/s hits a 5.0-m-wide patch of rough ice. She slows steadily, t
    12·1 answer
  • One of the purposes of an experiment is to determine whether the dependent variable affects the independent variable. Please sel
    11·2 answers
  • A _____ magnetic field can create an electric current.
    10·1 answer
  • In the diagram, the arrow shows the movement of electric
    14·1 answer
  • A 2000 N net force will give a car with some amount of mass an acceleration of 4 m/s2
    15·1 answer
  • please help with questions
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!