Molarity after dilution : 0.0058 M
<h3>Further explanation
</h3>
The number of moles before and after dilution is the same
The dilution formula
M₁V₁=M₂V₂
M₁ = Molarity of the solution before dilution
V₁ = volume of the solution before dilution
M₂ = Molarity of the solution after dilution
V₂ = Molarity volume of the solution after dilution
M₁=0.1 M
V₁=6.11
V₂=105.12

Answer:
3.43×10¹ mol
Explanation:
Given data:
Initial number of moles = 12.4 mol
Initial volume = 122.8 L
Final number of moles = ?
Final volume = 339.2 L
Solution:
The number of moles and volume are directly proportional to each other at same temperature and pressure.
V₁/n₁ = V₂/n₂
122.8 L/ 12.4 mol = 339.2 L / n₂
n₂ = 339.2 L× 12.4 mol / 122.8 L
n₂ = 4206.08 L.mol /122.8 L
n₂ = 34.3mol
In scientific notation:
3.43×10¹ mol
The correct answer is option B, that is, the pitch changes from low to high.
The Doppler shift or the Doppler Effect refers to the variation in the wavelength or frequency of a wave in association with an observer who is traveling comparative to the source of the wave. A prime illustration of Doppler shift is the modification of the pitch heard when a vehicle sounding a horn comes towards and move away from an observer.
In comparison to the frequency emitted, the obtained frequency is greater at the time of approach, similar at the instant of passing by, and lower at the time of recession.
The enthalpy change is negative.
The other statements are false because:
Can take place without a catalyst
Energy is given out to the surroundings.
Kinetic energy of products is higher.