Thermal energy from friction. ... All the work done by the friction force results in a transfer of energy into thermal energy of the box-floor system. This thermal energy flows as heat within the box and floor, ultimately raising the temperature of both of these objects. Figure 1: Man pushing a box opposed by friction.
THE ANSWER IS .B. ORBITAL SHAPE
look at the chemical tables. but i believe it is A
Answer:
17,650 m
Explanation:
100 cm = 1m so, 176.5 × 100 = 17,650m
Answer:
0.41kg/sec
Explanation:
PV= nRT
Given : V= 505 L
P=0.88 atm
R= 0.08206 Latm/K*mol
T= 172 .0C = 172+273 = 445 K
n = PV /RT = 0.88 * 505 / 0.08206 * 445 = 12.17 moles per sec of N2 are consumed
As per reaction : N2 + 3H2 ----> 2NH3
1 mole N2 is consumed to produce 2 moles NH3
moles of NH3 produced per sec :
(2 moles NH3/1mol N2) * 12.17 moles N2 = 24.34 moles NH3 per sec
grams of NH3 produced per sec =
24.34 moles NH3 per sec * molar mass NH3 = 24.34 moles NH3 per sec * 17.031 g/mol = 414.5 g NH3 per sec
rate in Kg/sec = 414.5 g NH3 per sec * (1kg /1000g) = 0.4145 Kg/sec
= 0.41kg/sec