I would say that the answer has to be C
Since there is no change in mols on both sides of the equation the mass is constant
Answer:
26.3 moles of O₂ are needed to react completely with 35.0 mol of FeCl₃
Explanation:
To determine the number of moles of O₂ that are needed to react completely with 35.0 mol of FeCl₃, it is possible to use the reaction stoichiometry of the reaction (that is, the relationship between the amount of reagents and products in a chemical reaction), and rule of three as follows: if 4 moles of FeCl₃ react with 3 moles of O₂, 35 moles of FeCl₃ with how many moles of O₂ will it react?

moles of O₂= 26.25 ≅ 26.3
<u><em>26.3 moles of O₂ are needed to react completely with 35.0 mol of FeCl₃</em></u>
Answer:
A model is developed for predicting oxygen uptake, muscle blood flow, and blood chemistry changes under exercise conditions. In this model, the working muscle mass system is analyzed. The conservation of matter principle is applied to the oxygen in a unit mass of working muscle under transient exercise conditions. This principle is used to relate the inflow of oxygen carried with the blood to the outflow carried with blood, the rate of change of oxygen stored in the muscle myoglobin, and the uptake by the muscle. Standard blood chemistry relations are incorporated to evaluate venous levels of oxygen, pH, and carbon dioxide.
Explanation:
The volume of one mole of any gas at Standard Temperature and Pressure (1 atm and 0 degrees Celsius [273K]) is 22.4 L.