The answer you are looking for is True
Answer:
HI(aq) + H₂O(ℓ) ⟶ H₃O⁺(aq) + I⁻(aq)
Explanation:
The HI donates a proton to the water, converting it to a hydronium ion
HI(aq) + H₂O(ℓ) ⟶ H₃O⁺(aq) + I⁻(aq)
Thus, the HI is behaving like a Brønsted acid.
Answer:
223 g O₂
Explanation:
To find the mass of oxygen gas needed, you need to (1) convert moles Al to moles O₂ (via the mole-to-mole ratio from reaction coefficients) and then (2) convert moles O₂ to grams O₂ (via the molar mass). When writing your ratios/conversions, the desired unit should be in the numerator in order to allow for the cancellation of the previous unit. The final answer should have 3 sig figs because the given value (9.30 moles) has 3 sig figs.
4 Al + 3 O₂ ----> 2 Al₂O₃
^ ^
Molar Mass (O₂): 32.0 g/mol
9.3 moles Al 3 moles O₂ 32.0 g
------------------- x --------------------- x -------------------- = 223 g O₂
4 moles Al 1 mole
Gravity, its what holds the whole universe together