Answer:
The average speed of the blood in the capillaries is 0.047 cm/s.
Explanation:
Given;
radius of the aorta, r₁ = 1 cm
speed of blood, v₁ = 30 cm/s
Area of the aorta, A₁ = πr₁² = π(1)² = 3.142 cm²
Area of the capillaries, A₂ = 2000 cm²
let the average speed of the blood in the capillaries = v₂
Apply continuity equation to determine the average speed of the blood in the capillaries.
A₁v₁ = A₂v₂
v₂ = (A₁v₁) / (A₂)
v₂ = (3.142 x 30) / (2000)
v₂ = 0.047 cm/s
Therefore, the average speed of the blood in the capillaries is 0.047 cm/s.
The correct answer is: Option (D) length, speed
Explanation:
According to Faraday's Law of Induction:
ξ = Blv
Where,
ξ = Emf Induced
B = Magnetic Induction
l = Length of the conductor
v = Speed of the conductor.
As you can see that ξ (Emf/voltage induction) is directly proportional to the length and the speed of the conductor. Therefore, the correct answer will be Option (D) Length, Speed
Answer:
Explanation:
<u></u>
<u>1. Formulae:</u>
Where:
- E = kinetic energy of the particle
- λ = de-Broglie wavelength
- m = mass of the particle
- v = speed of the particle
- h = Planck constant
<u><em>2. Reasoning</em></u>
An alha particle contains 2 neutrons and 2 protons, thus its mass number is 4.
A proton has mass number 1.
Thus, the relative masses of an alpha particle and a proton are:

For the kinetic energies you find:


Thus:


From de-Broglie equation, λ = h/(mv)

Answer:
He's 3 miles west of school.
Explanation:
He went 5 miles up and 5 miles down which means that he really didn't go up or down. In between that, he went 3 miles west so if the 5 milers don't count, this puts him at 3 miles west of school.
c.charge due to the reaction process between the two