Answer: 529.9 Hz
Explanation:
Here we need to use the Doppler equation, so we have:
f' = f*(v + v0)/(v - vs)
Here, f is the frequency = 500Hz
v is the velocity of the wave, = 334m/s
v0 is the velocity of the observer = 20m/s
vs is the velocity of the source = 0m/s
Then we have:
f' = 500Hz*(334m/s + 20m/s)/(334m/s) = 529.9 Hz
Answer:
vpg = 0.064 N
Explanation:
Upthrust = Volume of fluid displaced
upthrust liquid on the cube g=10ms−2
vpg =0.2 x 0.2 x 0.2 x0.8 x 10= 0.064N
vpg = 0.064 N
hope it helps.
Answer:
Push with force of 1N
Explanation:
I have explained in the paper.
Goodluck
Answer:
Explanation:
Give that,
Spring constant (k)=40N/m
Force applied =75N
Since the force is applied to the right, we don't know if it is compressing or stretching the spring
So let assume it compress
Using hooke's law
F=-ke
e=-F/k
Then, e=-75/40
e=-1.875m
The deformation is 1.875m.
Let assume it stretch
Using hooke's law
-F=-ke
e=F/k
Then, e=75/40
e=1.875m
The elongation is 1.875m
As the temperature of water increases, the density of water will decrease.