1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Aleks04 [339]
3 years ago
10

PLZ SOMEONEE HELPP I’LL MARK BRANLIESTTTT

Physics
1 answer:
7nadin3 [17]3 years ago
8 0

Answer:

I'm pretty sure it's 37.5 joules of energy

Explanation:

hope this helps!

You might be interested in
Erase all the trajectories, and fire the pumpkin vertically again with an initial speed of 14 m/s. As you found earlier, the max
yanalaym [24]

Answer:

\theta=39.49^{\circ}

Explanation:

Maximum height of the pumpkin, H_{max}=9.99\ m

Initial speed, v = 22 m/s

We need to find the angle with which the pumpkin is fired. the maximum height of the projectile is given by :

H_{max}=\dfrac{v^2\ sin^2\theta}{2g}

On rearranging the above equation, to find the angle as :

\theta=sin^{-1}(\dfrac{\sqrt{2gH_{max}}}{v})

\theta=sin^{-1}(\dfrac{\sqrt{2\times 9.8\times 9.99}}{22})

\theta=39.49^{\circ}

So, the angle with which the pumpkin is fired is 39.49 degrees. Hence, this is the required solution.

8 0
3 years ago
Heptane and water do not mix, and heptane has a lower density (0.684 g/mL) than water (1.00 g/mL). A graduated cylinder contains
lakkis [162]

Given that the density of heptane is

d_h=\frac{0.684g}{mL}

The mass of heptane is

m_h=31\text{ g}

The density of water is

d_w=\frac{1g}{mL}

The mass of water is

m_w=37\text{ g}

The volume of heptane will be

\begin{gathered} V_h=\frac{m_h}{d_h} \\ =\frac{31}{0.684} \\ =45.32\text{ mL} \end{gathered}

The volume of water will be

\begin{gathered} V_w=\frac{m_w}{d_w} \\ =\frac{37}{1} \\ =37\text{ mL} \end{gathered}

Thus, the volume of heptane is 45.32 mL and the volume of water is 37 mL.

The total volume of liquid in the cylinder will be

\begin{gathered} V=V_h+V_w \\ =45.32+37 \\ =82.32\text{ mL} \end{gathered}

The total volume of liquid in the cylinder will be 82.32 mL.

7 0
1 year ago
A bullet is fired into the air at an angle of 45°. How far does it travel before it is 1,000 feet above the ground? (Assume that
Readme [11.4K]

Answer:

It travels 1414 feets.

Explanation:

Let's take the length the bullet travels <em>l </em>as the hypotenuse of a right triangle and the height it reaches one of its sides. Since we got the angle α at which it was fired and the height <em>h</em> it reached, we can calculate <em>l</em> using the <em>sin(α)</em> function:

sin(\alpha )=\frac{opposite side}{hypotenuse}\\sin(\alpha)=\frac{h}{l}\\l=\frac{h}{sin(\alpha)}

Replacing:

l=\frac{1000ft}{sin(\frac{\pi}{4})}

Solving and roundin to the nearest foot:

l=1414 ft

3 0
3 years ago
For an object with a given mass on Earth, calculate the weight of the object with the mass equal in magnitude to the number repr
leonid [27]

<u>Answer:</u> The weight of the object is 29.4 N

<u>Explanation:</u>

To calculate the weight of the object, we use the equation:

W=m\times g

where,

m = mass of the object = 3 kg

g = acceleration due to gravity = 9.8m/s^2

Putting values in above equation, we get:

W=3kg\times 9.8m/s^2\\\\W=29.4N

Hence, the weight of the object is 29.4 N

6 0
3 years ago
A football player with a mass of 88 kg and a speed of 2.0 m/s collides head-on with a player from the opposing team whose mass i
Ket [755]

Answer:

Speed of another player, v₂ = 1.47 m/s

Explanation:

It is given that,

Mass of football player, m₁ = 88 kg

Speed of player, v₁ = 2 m/s

Mass of player of opposing team, m₂ = 120 kg

The players stick together and are at rest after the collision. It shows an example of inelastic collision. Using the conservation of linear momentum as :

m_1v_1+m_2v_2=(m_1+m_2)V

V is the final velocity after collision. Here, V = 0 as both players comes to rest after collision.

v_2=-\dfrac{m_1v_1}{m_2}

v_2=-\dfrac{88\ kg\times 2\ m/s}{120\ kg}

v_2=-1.47\ m/s

So, the speed of another player is 1.47 m/s. Hence, this is the required solution.

7 0
3 years ago
Other questions:
  • Refer to the following diagram to answer this question
    9·2 answers
  • In my solar system, we have a planet that is the innermost to our star that is exactly like the innermost planet in your solar s
    13·1 answer
  • A client with hypertension who weighs 72.4 kg is receiving an infusion of nitroprusside (Nipride) 50 mg in D5W 250 ml at 75 ml/h
    8·1 answer
  • A projectile is fired over level ground with an initial velocity that has a vertical component of 20 m/s and a horizontal compon
    13·1 answer
  • What Energy source that produces wind
    13·2 answers
  • What did early experiments and Coulomb’s Law describe? Select all that apply. The further away two charged objects are the stron
    10·1 answer
  • If you applied a force of 200 Newtons to lift a box 2.20 meters above the floor, how much work would you be doing?
    6·1 answer
  • A cannon fires a shell toward a target with a momentum of 6750 kg m/s. This shell moves with a velocity of 150 m/s. Calculate
    14·1 answer
  • A projectile launcher has a mass of 3 kg. It fires a projectile of mass 0.08 kg horizontally at a speed of 300 m/s. a. What is t
    9·1 answer
  • Plz help I will give brainly to the correct answer
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!