You'll be using the equation f = m a, or force = mass x acceleration
First, you have to find the acceleration. The acceleration needed is the average acceleration over the 15 seconds is accelerated. So, you take the change in speed (25m/s - 15m/s) to get a change of 10m/s.
The average acceleration (acceleration per second) is found by dividing total acceleration by the time it took. So, it's 10 / 15, which equals .6. This is a, your acceleration
Now just plug it into the equation F = m a, because it already gives you the mass of the car
F = 550 x .6
Solve that to get F = 366.6. F is measured in Newtons (N), so your answer is 366.6N
The three main types of stress go along with the three types of plate boundaries: compression is common at convergent boundaries, tension at divergent boundaries, and shear at transform boundaries. Hope this helps
Spread or you can say forward
Answer:
Option D => it is moving from high potential to low potential and losing electric potential energy.
Explanation:
Consider a big circle, within the circle we have force, F. That force, F is known as the Electric Field and inside the region or field or space, charged particle or object will be able to exerts force on the other objects.
Electric Field can be represented mathematically by using the formula below; E = kQ/r^2.
So, let us answer the question with what we have considered above. It is worthy of note to know that electric Field moves from a region of higher potential to a region of lower potential. So, any option that says this is correct.
But, there is only one problem and that is the fact that the question asked us about the direction of the movement of proton. Since, proton is s a positive charge, it is going to lose electric potential energy. So, Option D is correct.