<span>Myoglobin, like most proteins, has a complex three dimensional structure that is formed from many twisted helices. There are more than one helix, and it does not look like beads on a straight piece of string. It is not branched.</span>
Answer: one simple distillation column is required to separate the stream into five pure products. With four different flat bottom flask, for collection of the distilled products
Explanation: simple distillation works with the difference in boiling points of the liquid to be separated. For the separation of five different constituent to be possible, we have to know the boiling points of the constituents.
For your understanding, let's define constituents in the liquid to be A, B, C, D, E. And the boiling points increases respectively. Start by heating the liquid to the boiling point of A to extract A. After a while check if the constituents A is still dropping in the flat bottom flask, if it has stopped dropping, it simply means that we have extracted all A constituents in the liquid, label the Flask A. Get another flask to extract constituent B.
Heat the mixture to the boiling point of B, after a while check if constituent B is still dropping in the flat bottom flask, if it has stopped dropping,it means that we have extracted all B constituent in the liquid, label the Flask B. Get another flask for C.
Repeat the same process for C and D.
After Extracting D we don't need to distillate E because we already have a pure form of E inside to the conical flask.
SEE PICTURE TO UNDERSTAND WHAT A SIMPLE DISTILLATION LOOKS LIKE
Ideal gas law is a combination of three gas laws, which are Boyle's law, Charles' law and Avogadro's law. Ideal gas law states that PV = nRT, where:
P = pressure of the gas
V = volume of the gas
n = no of moles of the gas
R = universal gas constant
T = absolute temperature in Kelvin
1 kg/L ----------- 0.001 kg/mL
22.4 kg/L ------- ??
22.4 x 0.001 / 1 => 0.0224 kg/mL