The solution would be like
this for this specific problem:
<span>Moles of carbon = 58.8 /
12 = 4.9 </span><span>
<span>Moles of hydrogen = 9.8 / 1 = 9.8 </span>
<span>Moles of oxugen = 31.4 / 16 m= 1.96 </span>
<span>Ratio 4.9 / 1.96 = 2.5 9.8 / 1.96 = 5.0 1.96 / 1.96 = 1 </span></span>
Simplest
formula = C5H10<span>
</span><span>I hope this helps and if
you have any further questions, please don’t hesitate to ask again.</span>
We can use the dilution formula to find the volume of the diluted solution to be prepared
c1v1 = c2v2
Where c1 is concentration and v1 is volume of the concentrated solution
And c2 is concentration and v2 is volume of the diluted solution to be prepared
Substituting the values in the equation
15 M x 25 mL = 3 M x v2
v2 = 125 mL
The 25 mL concentrated solution should be diluted with distilled water upto 125 mL to make a 3 M solution
<span>In chemistry, a catalyst can speed up the reaction (or make it initiate easier) by altering the activation energy, lowering it enough to allow the reactants to react more easily. Some negative catalysts or inhibitors can do the same by increasing the activation energy.
</span>
In rubidium oxide - Rb₂O , the ions are Rb⁺ and O²⁻
Rb is a group one element with one valence electron. To become stable it loses its outer electron to gain a complete outer shell.
Electronic configuration of Rb is - 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶ 5s¹
Once it loses its valence electron the configuration is;
- 1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰ 4s² 4p⁶
The noble gas with this configuration is Krypton - Kr
Oxygen electron configuration is 1s² 2s² 2p⁴
Once it gains 2 electrons the configuration is - 1s² 2s² 3p⁶
The noble gas with this configuration is Neon - Ne