Methylhexanamine<span> and its formula is C7H17N</span>
that thing is a drug
Answer:
HCl(aq) + KOH(aq) ⇒ KCl(aq) + H₂O(l)
Explanation:
Hydrochloric acid is an acid because it releases H⁺ in an aqueous solution.
Potassium hydroxide is a base because it releases OH⁻ in an aqueous solution.
When an acid reacts with a base they form a salt and water. This is a neutralization reaction. The neutralization reaction between hydrochloric acid and potassium hydroxide is:
HCl(aq) + KOH(aq) ⇒ KCl(aq) + H₂O(l)
Molecular weight it stands for molecular weight
Answer is: ph value of pyridine solution is 9.1.
Chemical
reaction: C₅H₅N +
H₂O → C₅H₅NH⁺ + OH⁻.<span>
c(pyridine - C</span>₅H₅N)
= 0.115M.<span>
Kb(C</span>₅H₅N)
= 1.4·10⁻⁹.
[C₅H₅NH⁺] = [OH⁻] = x; equilibrium concentration.<span>
[</span>C₅H₅N] =
0.115 M - x.
Kb = [C₅H₅NH⁺] · [OH⁻] / [C₅H₅N].
1.4·10⁻⁹ = x² / (0.115 M -x)
Solve quadratic equation: x = [OH⁻] = 0.0000127 M.<span>
pOH = -log(0.0000127 M) = 4.9</span>
<span>pH = 14 - 4.9 = 9.1.</span>
Answer:
0.4 M
Explanation:
The process that takes place in an aqueous K₂HPO₄ solution is:
First we <u>calculate how many K₂HPO₄ moles are there in 200 mL of a 0.2 M solution</u>:
- 200 mL * 0.2 M = 40 mmol K₂HPO₄
Then we <u>convert K₂HPO₄ moles into K⁺ moles</u>, using the <em>stoichiometric coefficients</em> of the reaction above:
- 40 mmol K₂HPO₄ *
= 80 mmol K⁺
Finally we <em>divide the number of K⁺ moles by the volume</em>, to <u>calculate the molarity</u>:
- 80 mmol K⁺ / 200 mL = 0.4 M