1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ankoles [38]
3 years ago
14

What is the defining feature of a system?  A. properties that don’t change  B. collision   C. interaction   D. gravitational for

ce
Physics
1 answer:
Evgen [1.6K]3 years ago
8 0
<u><em> . . . a system is a set of interacting/interdependent components contained within a boundary</em></u>

 . . so the answer is <u><em>C. interaction</em></u>
You might be interested in
Suppose you drop a superball of massMand a marble of mass m(both treated as point masses) from a heighthwith the marble just on
mina [271]

Answer:

 h '= [ ( \frac{ M-m}{M +m  } )+ 2 (\frac{M}{M+m})]²  h

Explanation:

Let's analyze this problem, first the two bodies travel together, second the superball bounces, third it collides with the marble and fourth the marble rises to a height h ’

let's start by finding the velocity of the two bodies just before the collision, let's use the concepts of energy

starting point. Starting point

         Em₀ = U = m g h

final point. Just before the crash

         Em_f = K = ½ m v²

as there is no friction the mechanical energy is conserved

         Em₀ = Em_f

         mg h = ½ m v²

         v = √2gh

this speed is the same for the two bodies.

Second point. The superball collides with the ground, this process is very fast, so we will assume that the marble has not collided, let's use the concept of conservation of moment

initial instant. Just when the superball starts contacting the ground

      p₀ = M v

this velocity is negative because it points down

final instant. Just as the superball comes up from the floor

      p_f = M v '

the other body does not move

      p₀ = p_f

     - m v = M v '

       v ’= -v

Therefore, the speed of the asuperbola is the same speed with which it arrived, but in the opposite direction, that is, upwards.

Let's use the subscript 1 for the marble and the subscript 2 for the superball

Third part. The superball and the marble collide

the system is formed by the two bodies, so that the forces during the collision are internal and the moment is conserved

initial instant. Moment of shock

        p₀ = M v_{1'}+ m v_2

final instant. When the marble shoots out.

        P_f = Mv_{1f'}+ m v_{2f}

        p₀ = p_

        M v_{1'}+ m v_2 = M v_{1f'} + m v_{2f}

        M (v_{1'} - v_{1f'}) = -m (v_2 - v_{2f})

in this expression we look for the exit velocity of the marble (v2f), as they indicate that the collision is elastic the kinetic nerve is also conserved

       K₀ = K_f

       ½ M v_{1'}² + m v₂² = M v_{1f'}²  + ½ m v_{2f}²

        M (v_{1'}² - v_{1f'}²) = - m (v₂² - v_{2f}²)

Let's set the relation  (a + b) (a-b) = a² - b²

      M (v_{1'} + v_{1f'})  (v_{1'} - v_{1f'}) = -m (v₂ + v_{2f}) (v₂ - v_{2f})

let's write our two equations

           M ( v_{1'} - v_{1f'}) = -m (v₂ - v_{2f})                 (1)

           M (v_{1'} + v_{1f'})  (v_{1'} - v_{1f'}) = -m (v₂ + v_{2f}) (v₂ - v_{2f})

       

if we divide these two expressions

           (v_{1'}+ v_{1f'}) = (v₂ + v_{2f} )

we substitute this result in equation 1 and solve

          v_{1f'}= (v₂ + v_{2f}) - v_{1'}

          M (v_{1'} - [(v₂ + v_{2f}) - v_{1'}] = -m (v₂ - v_{2f})

           -M v₂ - M v_{2f1'} + 2M v_{1'} = m v₂ - m v_{2f}

          -M v_{2f} -m v_{2f} = m v₂ -M v₂ + 2M v_{1'}

          v_{2f} (M + m) = - v₂ (M-m) + 2 M v_{1'}

           

          v_{2f} = - ( \frac{ M-m}{M +m  } )) v₂ + 2 (\frac{M}{M+m}) v_{1'}

now we can substitute the velocity values ​​found in the first two parts

          v_{2f} = - ( \frac{ M-m}{M +m  } ) √2gh + 2(\frac{M}{M+m}) √2gh

we simplify

          v_{2f} = [( \frac{ M-m}{M +m  } ) + 2 (\frac{M}{M+m})] \sqrt{2gh}

let's call the quantity in brackets that only depends on the masses

          A = ( \frac{ M-m}{M +m  } )+ 2 (\frac{M}{M+m})]

           

           v_{2f}= A \sqrt{2gh}

in general, the marble is much lighter than the superball, so its speed is much higher than the speed of the superball

finally with the conservation of energy we find the height that the marble reaches

       

Starting point

          Emo = K = ½ mv_{2f}²

Final point

          Emf = U = m g h'

          Em₀ = Em_f

          ½ m v_{2f}² = m g h ’

          h ’= ½ v_{2f}² / g

         h ’= ½ (A \sqrt{2gh})² / g

         h ’= A² h

         

         h '= [ ( \frac{ M-m}{M +m  } )+ 2 (\frac{M}{M+m})]²  h

6 0
3 years ago
A patient with type A blood is accidentally given a transfusion of type AB blood. Which of the following correctly describes wha
Vladimir [108]
<span>The antibodies in the patient's blood will fight or attack the donor's red blood cells and kill them. This could cause side effects called a hemolytic reaction - wherein the phenomena causes damage to the kidneys, fever, shortness of breath, low blood pressure, and chills.</span>
5 0
3 years ago
Which statement is true about the formation of bounds
MariettaO [177]
The formation of bonds releases energy. 
4 0
3 years ago
What is the<br> power of a light<br> bulb with 8V and<br> a current of 2A?
astra-53 [7]

Answer:

16 Watts

Explanation:

P = VI, where V is the voltage and I is the current (of the lightbulb)

V = 8 volts, I = 2 amps

P = 8 * 2 = 16 Watts

3 0
3 years ago
Read 2 more answers
An object attached to a horizontal spring is oscillating back and forth along a frictionless surface. The maximum speed of the o
Sliva [168]

Answer:

t = 0.37 seconds

Explanation:

t = (1/4)T

Maximum acceleration is;

a_max = Aω²

In simple harmonic motion, we know that v_max = Aω

Thus, a_max = v_max•ω

ω = a_max/v_max

We know that Period is given by;

T = 2π/ω

From initially, t = (1/4)T so, T = 4t

Thus, 4t = 2π/(a_max/v_max)

t = (2π/4)(v_max/a_max)

We are given;

Maximum velocity;v_max = 1.47 m/s

Max acceleration;a_max =6.24 m/s²

Thus,

t = (2π/4)(1.47/6.24)

t = 0.37 seconds

8 0
3 years ago
Other questions:
  • The environment contains
    8·2 answers
  • What is the heat flux (W/m^2), due to radiation heat transfer, from a black body if the surface temperature is 1000C? The convec
    13·2 answers
  • Three identical 50-kg balls are held at the corners of an equilateral triangle, 30 cm on each side. if one of the balls is relea
    12·2 answers
  • Which of the following factors will increase the current in a stationary wire loop?
    6·2 answers
  • Ben starts walking along a path at 4 mi/h. one and a half hours after ben leaves, his sister amanda begins jogging along the sam
    5·1 answer
  • you measure that it takes 0.75 seconds for a leaf to fall from a tree to the ground. the leaf experiences air resistance as it f
    10·1 answer
  • Hydrogen atom number 1 is known to be in the 4f state. Hydrogen atom number 2 is in the 5d state.
    10·1 answer
  • With what force will a car hit a tree if the car has a mass of 3,454 kg and it is accelerating at a rate of 5 m/s2?
    7·1 answer
  • Solid state has ____________ intermolecular force of attraction.
    14·1 answer
  • Why are streams and rivers important for ecosystems?
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!