Answer:
3.196 m/s
Explanation:
Parameters given:
Mass of Brittany and the skateboard, M = 62 kg
Mass of pumpkin, m = 3.7 kg
Initial speed of Brittany and the skateboard, U = 0 m/s
Final velocity of Brittany, the skateboard and the pumpkin, V = v = 0.18 m/s
We can solve this problem by applying the principle of conservation of momentum.
It states that the total final momentum of a system is equal to the total initial momentum of the system.
M*U + m*u = M*V + m*v
Where u is the initial velocity of the pumpkin.
Since the final velocity of Brittany and the skateboard is equal to the final velocity of pumpkin:
M*U + m*u = (M + m) *v
Solving this to get u:
(62 * 0) + (3.7 * u) = (62 + 3.7) * 0.18
0 + 3.7u = 65.7 * 0.18
3.7u = 11.826
u = 11.826 / 3.7
u = 3.196 m/s
The initial velocity of the pumpkin was 3.196 m/s.
Answer:
100 N
Explanation:
Given that,
Two forces whose resultant is 100newton are perpendicular to each other.
If one of them makes an angle of 60newton with the resultant.

and

The magnitude of force,

or
F = 100 N
So, the magnitude of force is 100 N.
Answer:
it will be 1/√2 of its original period.
Explanation:
Explanation:
Increase the temperature in Endothermic reactions (Reactions that absorb energy, or become cold) Decrease the temperature in Exothermic reactions (Reactions that release energy, or become hot) Add a catalyst (A substance that reduces activation energy, speeding up the reaction) Increase the concentration of reactants.
source: https://socratic.org/questions/how-can-a-chemical-change-be-speeded-up