Answer:
theoretically speaking I don't even wanna believe it's possible but if it does then then you should check for abortion
Answer:
4.6 years
Explanation:
This is solved using Kepler's third law which says:

Where
T = Orbital period of the planet (in seconds)
a = Distance from the star (in meters)
G = Gravitational constant
M = Mass of the parent star (in kg)
From the information given



We put this into Kepler's law and get:

This when converted to years is 4.6 years.
Is there options for this??
Answer:
I'm pretty sure the answer is 0 m/s²
Explanation:
The horizontal velocity of the second rock is 5 m/s, so if we pretend air resistance doesn't exist, it will maintain that horizontal velocity, meaning that there is no horizontal acceleration.
C. Members of the same species work together for survival