Total displacement along the length of mountain is given as
L = 235 m
angle of mountain with horizontal = 35 degree
now we will have horizontal displacement as
x = L cos35
x = 235 cos35 = 192.5 m
similarly for vertical displacement we can say
y = L sin35
y = 235 sin35 = 134.8 m
Answer:
E =230.4 MJ
Explanation:
As 1 mole of electron = 6X 10^23 particles.
charge of an electron is 1.6 X 10 ^-19 C
Finding Charge:
(6X10^23 ) (2.7)(1.6X10^-19 C)
i.e. 192 K C
now to find the energy released from electrons
V=E/q
E=V X q
i.e E = 120 V X 192 K C
E =230.4 MJ
Answer: People know that they jap e learned by their mistakes or by someone ya being them something
Answer:
The maximum height above the point of release is 11.653 m.
Explanation:
Given that,
Mass of block = 0.221 kg
Spring constant k = 5365 N/m
Distance x = 0.097 m
We need to calculate the height
Using stored energy in spring
...(I)
Using gravitational potential energy
....(II)
Using energy of conservation




Where, k = spring constant
m = mass of the block
x = distance
g = acceleration due to gravity
Put the value in the equation


Hence, The maximum height above the point of release is 11.653 m.
Explanation:
It is known that electric field is responsible for creating electric potential. As a result, it depends only on the electric field and not on the magnitude of charge.
So, when a charge is increased by a factor of 2 then electric potential will remain the same. Since, expression to calculate the electric potential is as follows.
U = qV
Since, the electric potential is directly proportional to the charge. Hence, when 0.2
tends to replaced by 0.4
then charge is increased by a factor of 2. Hence, the electric potential energy is doubled.
Thus, we can conclude that if that charge is replaced by a +0.4 µC charge then electric potential stays the same, but the electric potential energy doubles.