The mass of the horse is 186 kg.
The weight of the horse is
(186 kg)*(9.8 m/s^2) = 1822.8 N
According to Newton's 3rd Law, there is an equal and opposite force between the horse and the surface.
Therefore the normal reactive force is 1822.8 N.
Answer: 1822.8 N
Answer: 37.981 m/s
Explanation:
This situation is related to projectile motion or parabolic motion, in which the travel of the ball has two components: <u>x-component</u> and <u>y-component.</u> Being their main equations as follows:
<u>x-component:
</u>
(1)
Where:
is the point where the ball strikes ground horizontally
is the ball's initial speed
because we are told the ball is thrown horizontally
is the time since the ball is thrown until it hits the ground
<u>y-component:
</u>
(2)
Where:
is the initial height of the ball
is the final height of the ball (when it finally hits the ground)
is the acceleration due gravity
Knowing this, let's start by finding
from (2):
<u></u>
(3)
(4)
(5)
(6)
Then, we have to substitute (6) in (1):
(7)
And find
:
(8)
(9)
(10)
On the other hand, since we are dealing with constant acceleration (due gravity) we can use the following equation to find the value of the ball's final velocity
:
(11)
(12)
(13) This is the ball's final velocity, and the negative sign indicates its direction is downwards.
However, we were asked to find the <u>ball's final speed</u>, which is the module of the ball's final vleocity vector. This module is always positive, hence the speed of the ball just before it strikes the ground is 37.981 m/s (positive).
Actually, they're not. There's a group of stars and constellations arranged
around the pole of the sky that's visible at any time of any dark, clear night,
all year around. And any star or constellation in the rest of the sky is visible
for roughly 11 out of every 12 months ... at SOME time of the night.
Constellations appear to change drastically from one season to the next,
and even from one month to the next, only if you do your stargazing around
the same time every night.
Why does the night sky change at various times of the year ? Here's how to
think about it:
The Earth spins once a day. You spin along with the Earth, and your clock is
built to follow the sun . "Noon" is the time when the sun is directly over your
head, and "Midnight" is the time when the sun is directly beneath your feet.
Let's say that you go out and look at the stars tonight at midnight, when you're
facing directly away from the sun.
In 6 months from now, when you and the Earth are halfway around on the other
side of the sun, where are those same stars ? Now they're straight in the
direction of the sun. So they're directly overhead at Noon, not at Midnight.
THAT's why stars and constellations appear to be in a different part of the sky,
at the same time of night on different dates.
Answer:
3.75 × 10⁻⁸ N
Explanation:
Given:
Intensity of the electromagnetic wave, I = 150 W/m²
Sides of the board = 25 cm (= 0.25 m) and 30 cm (= 0.30 m)
therefore,
the area of the rectangular box, A = 0.25 × 0.30 = 0.075 m²
Now,
force exerted on the card by the radiation, F =
here,
C is the speed of the light = 3 × 10⁸ m/s
on substituting the respective values, we get
F =
or
F = 3.75 × 10⁻⁸ N
The diameter of venus in km is 12104.507Km.
<h3 /><h3>What is Unit conversion?</h3>
By definition, unit conversion refers to the division or multiplication operation used to convert measurements of the same quantity between various units. The act of converting something from one form to another in mathematics, such as from inches to millimetres or from litres to gallons, is known as conversion.
the diameter of venus = 7,523 miles
1 mile = 1.609 km
so,
diameter of venus = 7523 × 1.609 Km
= 12104.507Km
to learn more about unit conversion go to - brainly.com/question/13016491
#SPJ4