What exactly is a psychological disorder? How is a psychological disorder diagnosed? Defining exactly what constitutes a mental disorder can be tricky and, definitions have changed over time.
The
first problem is that psychologists must first decide exactly how to
define disorder. How do you determine if there is something
psychologically wrong or unhealthy about a person? How do you decide
what's normal and what's abnormal?
If you were to define disorder
as something that lies outside of the statistical norm, then people who
are considered exceptionally talented or gifted in a particular area
would be regarded as abnormal. So rather than focus on actions that are
considered outside of the normal statistically speaking, psychologists
tend to concentrate on the results of those behaviors. Behaviors that
are considered maladaptive and cause significant personal distress and
interrupt daily functioning are more likely to be labeled as abnormal.
Today
many psychologists agree that psychological disorders are characterized
by both personal distress and impairment in multiple areas of life.
Answer: (Sorry, but I don't know how to calculate mass)
1. 15 N
2. 0.4921
(feet per second squared)
4. 150 N
5. 8.202 feet per second squared
Answer:
0.4778 m/s
Explanation:
To solve this question, we will make use of law of conservation of momentum.
We are given that the rock's velocity is 12 m/s at 35°. Thus, the horizontal component of this velocity is;
V_x = (12 m/s)(cos(35°)) = 9.83 m/s.
Thus, the horizontal component of the rock's momentum is;
(3.5 kg)(9.83 m/s) = 34.405 kg·m/s.
Since the person is not pushed up off the ice or down into it, his momentum will have no vertical component and so his momentum will have the same magnitude as the horizontal component of the rock's momentum.
Thus, to get the person's speed, we know that; momentum = mass x velocity
Mass of person = 72 kg and we have momentum as 34.405 kg·m/s
Thus;
34.405 = 72 x velocity
Velocity = 34.405/72
Velocity = 0.4778 m/s
Answer:
v = 1.32 10² m
Explanation:
In this case we are going to use the universal gravitation equation and Newton's second law
F = G m M / r²
F = m a
In this case the acceleration is centripetal
a = v² / r
The force is given by the gravitational force
G m M / r² = m v² / r
G M/r = v²
Let's calculate the mass of the planet
M = v² r / G
M = (1.75 10⁴)² 5.00 10⁶ / 6.67 10⁻¹¹
M = 2.30 10²¹ kg
With this die we clear the equation to find the orbit of the second satellite
v = √ G M / r
v = √ (6.67 10⁻¹¹ 2.30 10²¹ / 8.75 10⁶)
v = 1.32 10² m