The empirical formula of metal iodide : CoI₃(Cobalt(III) Iodide)
<h3>Further explanation</h3>
13.02 g sample of Cobalt , then mol Co(MW=58.933 g/mol) :

Mass of metal iodide formed : 97.12 g, so mass of Iodine :

Then mol iodine (MW=126.9045 g/mol) :

mol ratio of Cobalt and Iodine in the compound :
Answer:
number of moles of NaCl produce = 12 mol
Explanation:
Firstly, we need to write the chemical equation of the reaction and balance it .
Na(s) + Cl2(g) → NaCl(s)
The balanced equation is as follows:
2Na(s) + Cl2(g) → 2NaCl(s)
1 mole(71 g) of chlorine produces 2 moles(117 g) of sodium chloride
6 mole of chlorine gas will produce ? mole of sodium chloride
cross multiply
number of moles of NaCl produce = 6 × 2
number of moles of NaCl produce = 12 moles
number of moles of NaCl produce = 12 mol
Answer:
Dispersion Forces are found between n-Pentane (CH₃-CH₂-CH₂-CH₂-CH₃) and n-Hexane (CH₃-CH₂-CH₂-CH₂-CH₂-CH₃).
Explanation:
Dispersion Forces are present and developed by those compounds which are non-polar in nature. In given statement n-Pentane and n-Hexane both are non-polar in nature as the electronegativity difference between Hydrogen atoms and Carbon atoms is less than 0.4.
When non-polar molecules approaches each other, a Dipole is induced in one of them, this step is known as Instantaneous Dipole, This generated Dipole on approaching another non-polar molecule induces dipole in it and the process propagates. Hence, creating intermolecular interactions.
I think it's 2:1 or 2:1:4. I mostly think it's 2:1 though. (: