Electric energy converted to light energy
Answer:
Elements that fall between those on the left and right sides of the periodic table
Explanation:
Transition metals:
These are present at the center of periodic table.
These are d-block elements.
They include the elements of group 3 to 12 in periodic table.
They have large charge to radius ratio.
They mostly form paramagnetic compounds.
They shoes more than one oxidation state.
They form colored compounds.
They all have high melting and boiling point.
They have high densities.
They form stable complexes.
The elements of f-block are also transition but they are called inner transition.These are consist of two series lanthanide and actinides.
Answer: 22 neutrons
Explanation: 40 is the mass number = atomic mass = total number of protons and neutrons in atomic nucleus
18 is the number of protons in the nucleus of this atom
Then 40 - 18 = 22 neutrons
and this is Argon
To solve for the absolute temperature, we assume ideal gas
behaviour so that we use the equation:
PV = nRT
or T = PV / nR
So calculating:
T = [6.6 atm * 0.40 L] / [(2.4g / 28g/mol) * 0.08205746 L
atm / mol K]
<span>T = 375.35 K</span>
Transition metals are less reactive than alkali metals because of their high ionization potential and high melting point.
On moving from left to right of the periodic table for every period, electrons fill in the same shell or orbital, with the alkali metals having the least filled outermost shells, one electron, which equates to fewer protons in them.
Consequently, they have a lesser attraction power from the nucleus, whereas, the corresponding transition metals of the same period have more protons interacting with electrons at the same distance, far from the nucleus as the alkali metals.