Data:
The charge of a body depends on the amount of electrons it gains or loses. Q = n * e, where "Q" is charge, "n" is the number of plus or minus electrons, and "e" is the fundamental charge of an electron

<span>. To know if the body has gained or lost, we look at the signal of its charge, remembering that the electron is negative. The charge of the body is 4 μC (positive), so there is a lack of electrons!
Q = 4 </span>μC →



<span>
We have:
</span>





<span>Work is required to pull a nucleon out of an atomic nucleus. It has more mass outside the nucleus.</span>
Answer:
576 joules
Explanation:
From the question we are given the following:
weight = 810 N
radius (r) = 1.6 m
horizontal force (F) = 55 N
time (t) = 4 s
acceleration due to gravity (g) = 9.8 m/s^{2}
K.E = 0.5 x MI x ω^{2}
where MI is the moment of inertia and ω is the angular velocity
MI = 0.5 x m x r^2
mass = weight ÷ g = 810 ÷ 9.8 = 82.65 kg
MI = 0.5 x 82.65 x 1.6^{2}
MI = 105.8 kg.m^{2}
angular velocity (ω) = a x t
angular acceleration (a) = torque ÷ MI
where torque = F x r = 55 x 1.6 = 88 N.m
a= 88 ÷ 105.8 = 0.83 rad /s^{2}
therefore
angular velocity (ω) = a x t = 0.83 x 4 = 3.33 rad/s
K.E = 0.5 x MI x ω^{2}
K.E = 0.5 x 105.8 x 3.33^{2} = 576 joules