Answer:
Gravity and
Air resistance
Explanation:
The two forces acting on a skydiver are gravitational force and air resistance.
Gravitational force is a force that tends to pull all massive bodies towards the center of the earth. It works on all bodies that has mass. The larger or bigger the mass, the more the pull of gravity on the body.
Air resistance is the drag of air on a body as it passes to it. It is resisting force.
- When a sky diver jumps out of a plane, he/she encounters both gravity and air resistance.
- It soon balances both force and attain terminal velocity.
- Air resistance is a frictional force that opposes motion.
- This frictional force pushes in the opposite direction of motion
- Motion direction is downward due to the celerity caused by gravity.
The thermal energy is proportional to the movement of the particles in every state.
Decreasing the thermal energy will decrease the movement.
Answer:
351 ohm
720 ohm
Explanation:
When c and d are open:
Terminals c and d are open.. If you redraw the circuit as below, you can see that the two resistors in the first column are in parallel as, they are connected together at both pairs of terminals (due to the short).
Hence, we have a pair of parallel resistors:
Req1 = (R1*R2)/ (R1 + R2) = 360*540/(360+540) = 216 ohms
Req2 = (R3*R4)/ (R3 + R4) = 180*540/(180+540) = 135 ohms
Now these two sets are in series with another Hence,
Req = Req1 + Req2 = 216 + 135 = 351 ohms
Answer: 351 ohms
When c and d are shorted:
The current will flow through the least resistant path naturally from resistors R3 and R1 or R4.
Both of these resistor lie in a single path placing the resistors in series to one another, hence
Req = R3 + R1 = 180 + 540 = 720 ohms
Answer:720 ohms
As the water russhes toward the shore, it rises because it is pushing against it.<span />
Answer:
40 km/h
Explanation:
First...
Look at the formula speed is equal to the distance over time or s = d/t.
Next...
Use the formula: 240/6.0
Finally...
Solve: 40
So the answer: 40 km/h