B- light bends as it passes through an object ( a would be reflect)
Answer:
A. 1.64 J
Explanation:
First of all, we need to find how many moles correspond to 1.4 mg of mercury. We have:
where
n is the number of moles
m = 1.4 mg = 0.0014 g is the mass of mercury
Mm = 200.6 g/mol is the molar mass of mercury
Substituting, we find
Now we have to find the number of atoms contained in this sample of mercury, which is given by:
where
n is the number of moles
is the Avogadro number
Substituting,
atoms
The energy emitted by each atom (the energy of one photon) is
where
h is the Planck constant
c is the speed of light
is the wavelength
Substituting,
And so, the total energy emitted by the sample is
Answer:
Explanation:
To solve this, we start by using one of the equations of motion. The very first one, in fact
1
V = U + at.
V = 0 + 0.8 * 3.4 = 2.72 m/s.
2.
V = 0 + 0.8 * 4.3 = 3.44 m/s.
3.
d = ½ * 0.8 * 4.3² + 3.44 * 12.9
d = 7.396 + 44.376
d = 51.77 m.
4.
d = 62 - 51.77 = 10.23 m. = Distance
traveled during deceleration.
a = (V² - Vo²) / 2d.
a = (0² - 3.44²) / 20.46
a = -11.8336 / 20.46 = -0.58 m/s²
5.
t = (V - Vo)/a =(0 - 3.44) / -0.58
t = -3.44/-.58 = 5.93 s
= Stop time.
T = 4.3 + 12.9 + 5.93 = 23.13 s. = Total
time the hare was moving.
6.
d = Vo * t + ½ * a * t² = 62 m.
0 + 0.5 * (23.13)² * a = 61
267.5a = 61
a = 61/267.5
a = 0.23 m/s²
Answer:
Tension T1 is less than tension T2.
T1 < T2
Explanation:
According to given data,
mass of box A ( mA) is grater than mass of box B (mB)
we can write,
m(A) > m(B)
Newton's second law states that:
Tension of object is directly proportional to the mass of the system.
T ∝ m
here Boxes A and B are being pulled to the right on a frictionless surface,
so Tension T1 generates due to the mass of box A m(A)
and Tension T2 arises due to mass of the system m(A) + m(B)
Thus tension T1 will be less than tension T2
T1 < T2
learn more about Tension force here:
<u>brainly.com/question/13175014</u>
<u />
#SPJ4